Skip to main content

Advertisement

Log in

A clinical decision-support system for dengue based on fuzzy cognitive maps

  • Published:
Health Care Management Science Aims and scope Submit manuscript

Abstract

Dengue is a viral infection widely distributed in tropical and subtropical regions of the world. Dengue is characterized by high fatality rates when the diagnosis is not made promptly and effectively. To aid in the diagnosis of dengue, we propose a clinical decision-support system that classifies the clinical picture based on its severity, and using causal relationships evaluates the behavior of the clinical and laboratory variables that describe the signs and symptoms related to dengue. The system is based on a fuzzy cognitive map that is defined by the signs, symptoms and laboratory tests used in the conventional diagnosis of dengue. The evaluation of the model was performed on datasets of patients diagnosed with dengue to compare the model with other approaches. The developed model showed a good classification performance with 89.4% accuracy and could evaluate the behaviour of clinical and laboratory variables related to dengue severity (it is an explainable method). This model serves as a diagnostic aid for dengue that can be used by medical professionals in clinical settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Qsim M, Ashfaq UA, Yousaf MZ, Masoud MS, Rasul I, Noor N, Hussain A (2017) Genetically modified Aedes aegypti to control dengue: A review. Crit Rev Eukaryot Gene Expr 27:331–340. https://doi.org/10.1615/CritRevEukaryotGeneExpr.2017019937

    Article  Google Scholar 

  2. Caicedo-Borrero DM, Tovar JR, Mendez A, Parra B, Bonelo A, Celis J, Villegas L, Collazos C, Osorio L (2020) Development and performance of dengue diagnostic clinical algorithms in Colombia. Am J Trop Med Hyg 102:1226–1236. https://doi.org/10.4269/ajtmh.19-0722

    Article  Google Scholar 

  3. World Health Organization (2020) Dengue and severe dengue. https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue. Accessed 29 Jul 2022

  4. Jaenisch T, Tam DTH, Kieu NTT, Ngoc T, Nam NT, Van Kinh N, Yacoub S, Chanpheaktra N, Kumar V, See LLC, Sathar J, Sandoval EP, Alfaro GMM, Laksono IS, Mahendradhata Y, Sarker M, Ahmed F, Caprara A, Benevides BS, Marques ET, Magalhaes T, Brasil P, Netto M, Tami A, Bethencourt SE, Guzman M, Simmons C, Quyen NTH, Merson L, Dung NTP, Beck D, Wirths M, Wolbers M, Lam PK, Rosenberger K, Wills B (2016) Clinical evaluation of dengue and identification of risk factors for severe disease: Protocol for a multicentre study in 8 countries. BMC Infect Dis 16:120. https://doi.org/10.1186/s12879-016-1440-3

    Article  Google Scholar 

  5. Wong PF, Wong LP, AbuBakar S (2020) Diagnosis of severe dengue: Challenges, needs and opportunities. J Infect Public Health 13:193–198. https://doi.org/10.1016/j.jiph.2019.07.012

    Article  Google Scholar 

  6. Sutton RT, Pincock D, Baumgart DC, Sadowski DC, Fedorak RN, Kroeker KI (2020) An overview of clinical decision support systems: benefits, risks, and strategies for success. npj Digital Medicine 3:17. https://doi.org/10.1038/s41746-020-0221-y

    Article  Google Scholar 

  7. Hoyos W, Aguilar J, Toro M (2021) Dengue models based on machine-learning techniques: A systematic literature review. Artif Intell Med 119:102157. https://doi.org/10.1016/j.artmed.2021.102157

    Article  Google Scholar 

  8. Fernández E, Smieja M, Walter SD, Loeb M (2016) A predictive model to differentiate dengue from other febrile illness. BMC Infect Dis 16:1–7. https://doi.org/10.1186/s12879-016-2024-y

    Article  Google Scholar 

  9. Gambhir S, Malik SK, Kumar Y (2017) PSO-ANN based diagnostic model for the early detection of dengue disease. New Horiz Transl Med 4:1–8. https://doi.org/10.1016/j.nhtm.2017.10.001

    Article  Google Scholar 

  10. Khan S, Ullah R, Khan A, Wahab N, Bilal M, Ahmed M (2016) Analysis of dengue infection based on Raman spectroscopy and support vector machine (SVM). Biomed Opt Express 7:2249. https://doi.org/10.1364/boe.7.002249

    Article  Google Scholar 

  11. Davi CCM, Pastor A, Oliveira T, Lima Neto FB, Braga-Neto U, Bigham A, Bamshad M, Marques ETA, Acioli-Santos B (2019) Severe dengue prognosis using human genome data and machine learning. IEEE Trans Biomed Eng. https://doi.org/10.1109/TBME.2019.2897285

  12. Puerto E, Aguilar J, López C, Chávez D (2019) Using multilayer fuzzy cognitive maps to diagnose Autism spectrum disorder. Appl Soft Comput J 75:58–71. https://doi.org/10.1016/j.asoc.2018.10.034

    Article  Google Scholar 

  13. Mago VK, Mehta R, Woolrych R, Papageorgiou EI (2012) Supporting meningitis diagnosis amongst infants and children through the use of fuzzy cognitive mapping. BMC Med Inform Decis Mak 12:1–12. https://doi.org/10.1186/1472-6947-12-98

    Article  Google Scholar 

  14. Papageorgiou EI, Papandrianos N, Karagianni G, Kyriazopoulos G, Sfyras D (2009) Fuzzy cognitive map based approach for assessing pulmonary infections, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 5722 LNAI, 109–118. https://doi.org/10.1007/978-3-642-04125-9_14

  15. Mayo Clinic (2020) Dengue. https://www.mayoclinic.org/diseases-conditions/dengue-fever/symptoms-causes/syc-20353078. Accessed 29 Jul 2022

  16. Guzman MG, Harris E (2015) Dengue. The Lancet 385:453–465. https://doi.org/10.1016/S0140-6736(14)60572-9

    Article  Google Scholar 

  17. Yacoub S, Wertheim H, Simmons CP, Screaton G, Wills B (2014) Cardiovascular manifestations of the emerging dengue pandemic. Nat Rev Cardiol 11:335–345. https://doi.org/10.1038/nrcardio.2014.40

    Article  Google Scholar 

  18. Yacoub S, Wills B (2014) Predicting outcome from dengue. BMC Med 12. https://doi.org/10.1186/s12916-014-0147-9

  19. Tavakolipoor P, Schmidt-Chanasit J, Burchard GD, Jordan S (2016) Clinical features and laboratory findings of dengue fever in german travellers: A single-centre, retrospective analysis. Travel Med Infect Dis 14 39–44. https://doi.org/10.1016/j.tmaid.2016.01.007, special Issue: Zika, Dengue and Chikungunya

  20. Mallhi TH, Khan AH, Adnan AS, Sarriff A, Khan YH, Jummaat F (2015) Clinico-laboratory spectrum of dengue viral infection and risk factors associated with dengue hemorrhagic fever: a retrospective study. BMC Infect Dis 15:399. https://doi.org/10.1186/s12879-015-1141-3

    Article  Google Scholar 

  21. World Health Organization (2009) Dengue guidelines for diagnosis, treatment, prevention and control: new edition. World Health Organization. https://apps.who.int/iris/handle/10665/44188. Accessed 29 Jul 2022

  22. Center for Disease Control and Prevention (CDC) (2020) Dengue: Clinical Presentation. https://www.cdc.gov/dengue/healthcare-providers/clinical-presentation.html. Accessed 29 Jul 2022

  23. Muller DA, Depelsenaire AC, Young PR (2017) Clinical and laboratory diagnosis of dengue virus infection. J Infect Dis 215:S89–S95. https://doi.org/10.1093/infdis/jiw649

    Article  Google Scholar 

  24. Kosko B (1986) Fuzzy cognitive maps. Int J Man Mach Stud 24:65–75. https://doi.org/10.1016/S0020-7373(86)80040-2

    Article  Google Scholar 

  25. Axelrod R (1976) Structure of decision: The cognitive maps of political elites. Princeton University Press

  26. Aguilar J (2013) Different dynamic causal relationship approaches for cognitive maps. Appl Soft Comput J 13:271–282. https://doi.org/10.1016/j.asoc.2012.08.037

    Article  Google Scholar 

  27. Aguilar J (2005) A survey about fuzzy cognitive maps papers (Invited Paper). Int J Comput Methods Cogn 3:27–33

    Google Scholar 

  28. Salmeron JL, Rahimi SA, Navali AM, Sadeghpour A (2017) Medical diagnosis of Rheumatoid Arthritis using data driven PSO-FCM with scarce datasets. Neurocomputing 232:104–112. https://doi.org/10.1016/j.neucom.2016.09.113

    Article  Google Scholar 

  29. Aguilar J (2001) A fuzzy cognitive map based on the random neural model. In: Monostori L, Váncza J, Ali M (eds) Engineering of intelligent systems. Springer, Berlin, pp 333–338

    Chapter  Google Scholar 

  30. Csardi G, Nepusz T (2006) The igraph software package for complex network research. InterJournal Complex Systems 1695. http://igraph.org. Accessed 29 Jul 2022

  31. R Core Team (2020) R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.r-project.org/. Accessed 29 Jul 2022

  32. Nápoles G, Grau I, Concepción L, Koutsoviti Koumeri L, Papa JP (2022) Modeling implicit bias with fuzzy cognitive maps. Neurocomputing 481:33–45. https://doi.org/10.1016/j.neucom.2022.01.070

    Article  Google Scholar 

  33. Aguilar J, Contreras J (2010) The FCM designer tool. In: Studies in fuzziness and soft computing, vol 247. Springer, Berlin, pp 71–87. https://doi.org/10.1007/978-3-642-03220-2_4

  34. Secretaría de Salud de Medellín (2020) Dengue and dengue grave dataset. http://medata.gov.co/dataset/dengue

  35. Kang H (2013) The prevention and handling of the missing data, Korean. Journal of Anesthesiology 64:402–406. https://doi.org/10.4097/kjae.2013.64.5.402

    Article  Google Scholar 

  36. Phakhounthong K, Chaovalit P, Jittamala P, Blacksell SD, Carter MJ, Turner P, Chheng K, Sona S, Kumar V, Day NP, White LJ, Pan-ngum W (2018) Predicting the severity of dengue fever in children on admission based on clinical features and laboratory indicators: Application of classification tree analysis. BMC Pediatr 18:1–9. https://doi.org/10.1186/s12887-018-1078-y

    Article  Google Scholar 

  37. World Health Organization (2016) Dengue: guidelines for patient care in the region of the Americas: 2nd edition. World Health Organization. https://iris.paho.org/handle/10665.2/31207. Accessed 29 Jul 2022

  38. Gosain A, Sardana S (2017) Handling class imbalance problem using oversampling techniques: A review. In: 2017 international conference on advances in computing, Communications and Informatics, ICACCI 2017, volume 2017-January, Institute of Electrical and Electronics Engineers Inc. pp 79–85. https://doi.org/10.1109/ICACCI.2017.8125820

  39. Papageorgiou EI, Papandrianos NI, Karagianni G, Kyriazopoulos GC, Sfyras D (2009) A Fuzzy Cognitive Map based tool for prediction of infectious diseases. IEEE Int Conf Fuzzy Syst 2094–2099. https://doi.org/10.1109/FUZZY.2009.5277254

  40. Rudin C (2019) Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. https://doi.org/10.1038/s42256-019-0048-x, arXiv:1811.10154

  41. Park S, Srikiatkhachorn A, Kalayanarooj S, Macareo L, Green S, Friedman JF, Rothman AL (2018) Use of structural equation models to predict dengue illness phenotype. PLoS Negl Trop Dis 12:e0006799. https://doi.org/10.1371/journal.pntd.0006799

    Article  Google Scholar 

  42. Ho TS, Weng TC, Wang JD, Han HC, Cheng HC, Yang CC, Yu CH, Liu YJ, Hu CH, Huang CY, Chen MH, King CC, Oyang YJ, Liu CC (2020) Comparing machine learning with case-control models to identify confirmed dengue cases. PLoS Negl Trop Dis 14:1–21. https://doi.org/10.1371/journal.pntd.0008843

    Article  Google Scholar 

  43. Rácz A, Bajusz D, Héberger K (2021) Effect of dataset size and train/test split ratios in QSAR/QSPR multiclass classification. Molecules 26. https://doi.org/10.3390/MOLECULES26041111

  44. Barbedo JGA (2018) Impact of dataset size and variety on the effectiveness of deep learning and transfer learning for plant disease classification. Comput Electron Agric 153:46–53. https://doi.org/10.1016/J.COMPAG.2018.08.013

    Article  Google Scholar 

  45. Aguilar J (2001) A general ant colony model to solve combinatorial optimization problems. Revista Colombiana de Computación 2:7–18. https://revistas.unab.edu.co/index.php/rcc/article/view/1118. Accessed 29 Jul 2022

  46. Google (2017) Federated Learning: Collaborative Machine Learning without Centralized Training Data. https://ai.googleblog.com/2017/04/federated-learning-collaborative.html. Accessed 29 Jul 2022

Download references

Acknowledgements

This study was partially funded by the Colombian Administrative Department of Science, Technology and Innovation - COLCIENCIAS (grant number 111572553478) (M. Toro) and Colombian Ministry of Science and Technology Bicentennial PhD Grant (W. Hoyos). The authors are grateful to physicians for using their knowledge and experience to build the FCMs and interpreting the final results.

Author information

Authors and Affiliations

Authors

Contributions

William Hoyos: Conceptualization, Methodology, Software, Formal analysis, Investigation, Data curation, Validation, Visualization & Writing - original draft. Jose Aguilar: Conceptualization, Methodology, Formal analysis, Investigation, Resources, Supervision, Writing – reviewing & editing. Mauricio Toro: Conceptualization, Resources, Supervision, Writing - reviewing & editing.

Corresponding author

Correspondence to Jose Aguilar.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoyos, W., Aguilar, J. & Toro, M. A clinical decision-support system for dengue based on fuzzy cognitive maps. Health Care Manag Sci 25, 666–681 (2022). https://doi.org/10.1007/s10729-022-09611-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10729-022-09611-6

Keywords

Navigation