Skip to main content
Log in

Syntheses of dopa glycosides using glucosidases

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Syntheses of l-dopa 1a glucoside 10a,b and dl-dopa 1b glycosides 1018 with d-glucose 2, d-galactose 3, d-mannose 4, d-fructose 5, d-arabinose 6, lactose 7, d-sorbitol 8 and d-mannitol 9 were carried out using amyloglucosidase from Rhizopus mold, β-glucosidase isolated from sweet almond and immobilized β-glucosidase. Invariably, l-dopa and dl-dopa gave low to good yields of glycosides 10–18 at 12–49% range and only mono glycosylated products were detected through glycosylation/arylation at the third or fourth OH positions of l-dopa 1a and dl-dopa 1b. Amyloglucosidase showed selectivity with d-mannose 4 to give 4-O-C1β and d-sorbitol 8 to give 4-O-C6-O-arylated product. β-Glucosidase exhibited selectivity with d-mannose 4 to give 4-O-C1β and lactose 7 to give 4-O-C1β product. Immobilized β-glucosidase did not show any selectivity. Antioxidant and angiotensin converting enzyme inhibition (ACE) activities of the glycosides were evaluated glycosides, out of which l-3-hydroxy-4-O-(β-d-galactopyranosyl-(1′→4)β-d-glucopyranosyl) phenylalanine 16 at 0.9 ± 0.05 mM and dl-3-hydroxy-4-O-(β-d-glucopyranosyl) phenylalanine 11b,c at 0.98 ± 0.05 mM showed the best IC50 values for antioxidant activity and dl-3-hydroxy-4-O-(6-d-sorbitol)phenylalanine 17 at 0.56 ± 0.03 mM, l-dopa-d-glucoside 10a,b at 1.1 ± 0.06 mM and dl-3-hydroxy-4-O-(d-glucopyranosyl)phenylalanine 11a-d at 1.2 ± 0.06 mM exhibited the best IC50 values for ACE inhibition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig 1

Similar content being viewed by others

References

  1. Yar, M.D.: Parkinson;s disease, the L-dopa era. Adv. Neurobiol. 60, 11–17 (1993)

    Google Scholar 

  2. Angerlacenci, M.: Dopamine dysregulation of movement control in L-dopa induced dyskinesia. Trends Neurosci. 30(5), 236–243 (2007). doi:10.1016/j.tins.2007.03.005

    Article  Google Scholar 

  3. Shetty, P., Atallah, M.T., Shetty, K.: Effects of UV treatment on the proline-linked pentose phosphate pathway for phenolics and L-DOPA synthesis in dark germinated Vicia faba. Process Biochem. 37, 1285–1295 (2002). doi:10.1016/S0032-9592(02)00013-4

    Article  CAS  Google Scholar 

  4. Yamada, H., Aimi, Y., Nagatsu, I., Taki, K., Kudo, M., Arai, R.: Immunohistochemical detection of L-dopa derived dopamine within serotonergic fibres in the striatum and the substantia nigra pars reticulata in Parkinsonian model rats. Neurosci. Res. 59, 1–7 (2007). doi:10.1016/j.neures.2007.05.002

    Article  PubMed  CAS  Google Scholar 

  5. Mueckler, M.: Facilitative glucose transporters. Eur. J. Biochem. 219, 713–725 (1994). doi:10.1111/j.1432-1033.1994.tb18550.x

    Article  PubMed  CAS  Google Scholar 

  6. Dalpiaz, A., Filosa, R., de Caprariis, P., Conte, G., Bortolotti, F., Biondi, C., et al.: Molecular mechanism involved in the transport of a prodrug dopamine glycosyl conjugate. Int. J. Pharm. 336, 133–139 (2007). doi:10.1016/j.ijpharm.2006.11.051

    Article  PubMed  CAS  Google Scholar 

  7. Pardridge, W.M.: Targeting neurotherapeutic agents through the blood–brain barrier. Arch. Neurol. 59, 35–40 (2002). doi:10.1001/archneur.59.1.35

    Article  PubMed  Google Scholar 

  8. Madrid, Y., Langer, L.F., Brem, H., Langer, R.: New directions in the delivery of drugs and other substances to the central nervous system. Adv. Pharmacol. 22, 299–324 (1991). doi:10.1016/S1054-3589(08)60039-3

    Article  PubMed  CAS  Google Scholar 

  9. Pras, N., Woerdenbag, J., Van Uden, W.: Bioconversion potential of plant enzymes for the production of pharmaceuticals. Plant Cell. Tissue Org. Cult. 43, 117–121 (1995). doi:10.1007/BF00052165

    Article  CAS  Google Scholar 

  10. Giri, A., Dhingra, V., Giri, C.C., Singh, A., Ward, O.P., Narasu, M.L.: Biotransformations using plant cells, organ cultures and enzyme systems: current trends and future prospects. Biotechnol. Adv. 19, 175–199 (2001). doi:10.1016/S0734-9750(01)00054-4

    Article  PubMed  CAS  Google Scholar 

  11. Guggenheim, M.: Dioxyphenylalanineine neue Aminosaureaus Vicia faba. Hoppe-Seylers’s Zeitschr Physiol. Chem. (Kyoto) 88, 276–284 (1913)

    Google Scholar 

  12. Vered, Y., Rabey, J.M., Paleveitch, D., Grosskopf, I., Harsat, A., Yanowski, A., et al.: Bioavailability of levodopa after consumption of Vicia faba seedlings by Parkinsonian patients and control subjects. Clin. Neuropharmacol. 17, 138–146 (1994). doi:10.1097/00002826-199404000-00004

    Article  Google Scholar 

  13. Nagasawa, T., Takagi, H., Kawakami, K., Suzuki, T., Shahaghi, Y.: The browning compounds of bean III isolation of dopa-O-β-D-glucoside and the enzymic mechanism for the color change of broad bean. Agric. Biol. Chem. 25, 441–447 (1961)

    CAS  Google Scholar 

  14. Andrews, R.S., Pridham, J.B.: Structure of dopa glucoside from Vicia faba. Nature 205, 1213–1214 (1965). doi:10.1038/2051213a0

    Article  CAS  Google Scholar 

  15. Kempster, P.A., Bogetic, Z., Secombei, J.W., Martin, H.D., Balazs, N.D.H., Wahlquist, M.C.: Motor effect of broad beans Vicia faba in Parkinson’s disease: single dose studies. Asia Pac. J. Clin. Nutr. 2, 85–89 (1993)

    Google Scholar 

  16. Sasaki, N., Adachi, T., Koda, T., Ozeki, Y.: Detection of UDP-glucose: cyclo-dopa 5-O-glucosyltransferase activity in four O’ clocks (Mirabilis jalapa L.). FEBS Lett. 568, 159–162 (2004). doi:10.1016/j.febslet.2004.04.097

    Article  PubMed  CAS  Google Scholar 

  17. Wyler, H., Meuer, U., Bauer, J., Stravs-Mombelli, L.: Cyclodopa glucoside (=(2S)-5-(β-D-glucopyranosyloxy)-6-hydroxyindoline-2-carboxylic acid) and its occurrence in red beet (beta Vulgaris Var. rubra L.). Helv. Chim. Acta 67(5), 1348–1355 (2004). doi:10.1002/hlca.19840670520

    Article  Google Scholar 

  18. Fernandez, C., Nieto, O., Fontenla, J.A., Rivas, E., de Ceballos, M.L., Fernandez-Mayoralas, A.: Synthesis of glycosyl derivatives as dopamine prodrugs: interaction with glucose carrier GLUT-1. Org. Biomol. Chem. 1, 767–771 (2003). doi:10.1039/b212066f

    Article  PubMed  CAS  Google Scholar 

  19. Roode, B.M., Franssen, M.C.R., Vander padt, A., Boom, R.M.: Perspective for the industrial enzymatic production of glycosides. Biotechnol. Prog. 19, 1391–1402 (2003). doi:10.1021/bp030038q

    Article  PubMed  Google Scholar 

  20. Suzuki, Y., Ki, Y.H., Uchida, K., Takami, M.: Enzymatic synthesis of glucosylated and phosphatidylated biologically active compounds. J. Appl. Glycosci. 43, 273–282 (1996)

    CAS  Google Scholar 

  21. Vijayakumar, G.R., Divakar, S.: Amyloglucosidase catalyzed synthesis of eugenyl and curcuminyl glycosides. Biotechnol. Lett. 29, 575–584 (2007). doi:10.1007/s10529-006-9272-7

    Article  PubMed  CAS  Google Scholar 

  22. Hestrin, S., Feingold, D.S., Schramm, M.: Hexoside hydrolases. Methods Enzymol. 1, 234–240 (1955)

    Google Scholar 

  23. Won, K., Kim, S., Kim, K.J., Park, H.W., Moon, S.J.: Optimization of lipase entrapment in Ca alginate gel beads. Process Biochem. 40, 2149–2154 (2005). doi:10.1016/j.procbio.2004.08.014

    Article  CAS  Google Scholar 

  24. Sumner, J.B., Sisler, E.B.: A simple method for blood sugar. Arch. Biochem. 4, 333–336 (1944)

    CAS  Google Scholar 

  25. Colowick, S.P., Kaplan, N.O.: Immobilized enzymes. Methods Enzymol. 44, 101–104 (1976)

    Google Scholar 

  26. Moon, J.H., Tearo, J.: Antioxidant activity of caffeic acid and dihydro caffeic acid in lard and luman low density lipoprotein. J. Agric. Food Chem. 48, 5062–5065 (1998). doi:10.1021/jf9805799

    Article  Google Scholar 

  27. Ponrasu, T., Einstein Charles, R., Sivakumar, R., Divakar, S.: Syntheses of α-tocopheryl glycosides by glucosidases. Biotechnol. Lett. 30, 1431–1439 (2008). doi:10.1007/s10529-008-9702-9

    Article  PubMed  CAS  Google Scholar 

  28. Cushman, D.W., Cheung, H.S.: Spectrophotometric assay and properties of the Angiotensin-Converting Enzyme of rabbit lung. Chem. Pharmacol. 20, 1637–1638 (1971)

    CAS  Google Scholar 

  29. Lohith, K., Vijayakumar, G.R., Somashekar, B.R., Sivakumar, R., Divakar, S.: Glycosides and amino acyl esters of carbohydrates as potent inhibitors of angiotensin converting enzyme. Eur. J. Med. Chem. 41, 1059–1072 (2006). doi:10.1016/j.ejmech.2006.04.005

    Article  PubMed  CAS  Google Scholar 

  30. Ljunger, G., Aldercreutz, P., Mattiassen, B.: Enzymatic synthesis of octyl-β-glucoside in octanol at controlled water actvity. Enzyme Microb. Technol. 16, 751–755 (1994). doi:10.1016/0141-0229(94)90031-0

    Article  CAS  Google Scholar 

  31. Vic, G., Crout, D.H.G.: Synthesis of allyl and benzyl β-D-glucopyranoside from D-glucose or D-galactose and the corresponding alcohol using almond β-D-glucosidase. Carbohydr. Res. 279, 315–319 (1995). doi:10.1016/0008-6215(95)00301-0

    Article  CAS  Google Scholar 

  32. Valivety, R.H., Halling, P.J., Macrae, A.R.: Rhizomucor mechei remains highly active at water activity below 0.0001. FEBS Lett. 301, 258–260 (1992). doi:10.1016/0014-5793(92)80252-C

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

One of us (SD) acknowledges the Department of Biotechnology, India, for the financial assistance provided. TP also acknowledges DBT for the Project Assistantship provided. RS thanks the Council of Scientific and Industrial Research, New Delhi, India, for providing a Senior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soundar Divakar.

Electronic supplementary material

Spectral data of all the synthesized glycosides are shown as supplementary data.

ESM 1

(PDF 5.154 mb).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sivakumar, R., Ponrasu, T. & Divakar, S. Syntheses of dopa glycosides using glucosidases. Glycoconj J 26, 199–209 (2009). https://doi.org/10.1007/s10719-008-9176-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-008-9176-y

Keywords

Navigation