Skip to main content
Log in

Bespoke analogue space-times: meta-material mimics

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

Modern meta-materials allow one to construct electromagnetic media with almost arbitrary bespoke permittivity, permeability, and magneto-electric tensors. If (and only if) the permittivity, permeability, and magneto-electric tensors satisfy certain stringent compatibility conditions, can the meta-material be fully described (at the wave optics level) in terms of an effective Lorentzian metric—an analogue spacetime. We shall consider some of the standard black-hole spacetimes of primary interest in general relativity, in various coordinate systems, and determine the equivalent meta-material susceptibility tensors in a laboratory setting. In static black hole spacetimes (Schwarzschild and the like) certain eigenvalues of the susceptibility tensors will be seen to diverge on the horizon. In stationary black hole spacetimes (Kerr and the like) certain eigenvalues of the susceptibility tensors will be seen to diverge on the ergo-surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. To proceed, we could in principle perform a “local” Lorentz transformation from the rest frame V of the medium into the laboratory frame—along the lines of Appendix B of reference [1], but the “matching” analysis presented here is more straightforward.

References

  1. Schuster, S., Visser, M.: Effective metrics and a fully covariant description of constitutive tensors in electrodynamics. Phys. Rev. D 96, 124019 (2017). https://doi.org/10.1103/PhysRevD.96.124019. arXiv:1706.06280 [gr-qc]

    Article  ADS  Google Scholar 

  2. Gordon, W.: Zur Lichtfortpflanzung nach der Relativitätstheorie. Ann. Phys. 377(22), 421–456 (1923). https://doi.org/10.1002/andp.19233772202

    Article  MATH  Google Scholar 

  3. Landau, L.D., Lifshitz, E.M.: The Classical Theory of Fields, 3rd edn. Pergamon Press, Oxford (1971)

    MATH  Google Scholar 

  4. Plebański, J.: Electromagnetic waves in gravitational fields. Phys. Rev. 118, 1396–1408 (1960)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Plebanśki, J.: Lectures on Nonlinear Electrodynamics. Nordita, Copenhagen (1970)

    Google Scholar 

  6. de Felice, F.: On the gravitational field acting as an optical medium. Gen. Relativ. Gravit. 2, 347–357 (1971)

    Article  ADS  Google Scholar 

  7. Skrotskii, G.V.: The influence of gravitation on the propagation of light. Sov. Phys. Dokl. 2, 226–229 (1957)

    ADS  Google Scholar 

  8. Balazs, N.L.: Effect of a gravitational field, due to a rotating body, on the plane of polarization of an electromagnetic wave. Phys. Rev. 110, 236–239 (1958)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Anderson, J.L., Spiegel, E.A.: Radiative transfer through a flowing refractive medium. Astrophys. J. 202, 454–464 (1975)

    Article  ADS  Google Scholar 

  10. Pham, Q.M.: Sur les équations de l’electromagné dans la materie. C. R. Hebd. Seanc. Acad. Sci. 242, 465–467 (1956)

    Google Scholar 

  11. Thompson, R.T., Frauendiener, J.: Dielectric analog space-times. Phys. Rev. D 82, 124021 (2010). arXiv:1010.1587 [gr-qc]

    Article  ADS  Google Scholar 

  12. Thompson, R.T., Cummer, S.A., Frauendiener, J.: Generalized transformation optics of linear materials. J. Opt. 13, 055105 (2011). arXiv: 1006.3364 [physics.optics]

    Article  ADS  Google Scholar 

  13. Thompson, R.T., Cummer, S.A., Frauendiener, J.: A completely covariant approach to transformation optics. J. Opt. 13, 024008 (2011). arXiv:1006.3118 [physics.optics]

    Article  ADS  Google Scholar 

  14. Thompson, R.T., Fathi, M.: Shrinking cloaks in expanding space-times: the role of coordinates and the meaning of transformations in transformation optics. Phys. Rev. A 92(1), 013834 (2015). https://doi.org/10.1103/PhysRevA.92.013834. arXiv:1506.08507 [physics.optics]

    Article  ADS  Google Scholar 

  15. Fathi, M., Thompson, R.T.: Cartographic distortions make dielectric spacetime analog models imperfect mimickers. Phys. Rev. D 93(12), 124026 (2016). https://doi.org/10.1103/PhysRevD.93.124026. arXiv:1602.08341 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  16. Thompson, R.T.: Covariant Electrodynamics in Linear Media: Optical Metric. arXiv:1712.06872 [gr-qc]

  17. Leonhardt, U., Piwnicki, P.: Optics of nonuniformly moving media. Phys. Rev. A 60, 4301 (1999). https://doi.org/10.1103/PhysRevA.60.4301

    Article  ADS  Google Scholar 

  18. Unruh, W.G.: Experimental black hole evaporation. Phys. Rev. Lett. 46, 1351 (1981). https://doi.org/10.1103/PhysRevLett.46.1351

    Article  ADS  Google Scholar 

  19. Visser, M.: Acoustic Propagation in Fluids: An Unexpected Example of Lorentzian Geometry. arXiv:gr-qc/9311028

  20. Visser, M.: Acoustic black holes: horizons, ergospheres, and Hawking radiation. Class. Quantum Gravit. 15, 1767 (1998). https://doi.org/10.1088/0264-9381/15/6/024. arXiv:gr-qc/9712010

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Barceló, C., Liberati, S., Visser, M.: Analog gravity from Bose–Einstein condensates. Class. Quantum Gravit. 18, 1137 (2001). https://doi.org/10.1088/0264-9381/18/6/312. arXiv:gr-qc/0011026

    Article  ADS  MATH  Google Scholar 

  22. Barceló, C., Liberati, S., Visser, M.: Probing semiclassical analog gravity in Bose-Einstein condensates with widely tunable interactions. Phys. Rev. A 68, 053613 (2003). https://doi.org/10.1103/PhysRevA.68.053613. arXiv:cond-mat/0307491

    Article  ADS  Google Scholar 

  23. Visser, M., Molina-París, C.: Acoustic geometry for general relativistic barotropic irrotational fluid flow. New J. Phys. 12, 095014 (2010). https://doi.org/10.1088/1367-2630/12/9/095014. arXiv:1001.1310 [gr-qc]

    Article  ADS  Google Scholar 

  24. Barceló, C., Liberati, S., Visser, M.: Analogue gravity. Living Rev. Rel. 8 12 (2005) [Living Rev. Rel. 14 (2011) 3] https://doi.org/10.12942/lrr-2005-12. arXiv:gr-qc/0505065

  25. Visser, M., Barceló, C., Liberati, S.: Analog models of and for gravity. Gen. Relativ. Gravit. 34, 1719 (2002). https://doi.org/10.1023/A:1020180409214. arXiv:gr-qc/0111111

    Article  MATH  Google Scholar 

  26. Visser, M.: Survey of analogue spacetimes. Lect. Notes Phys. 870, 31 (2013). https://doi.org/10.1007/978-3-319-00266-8_2. arXiv:1206.2397 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Boersma, S., Dray, T.: Slicing, threading and parametric manifolds. Gen. Relativ. Gravit. 27, 319 (1995). https://doi.org/10.1007/BF02109128. arXiv:gr-qc/9407020

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Bejancu, A., Calin, C.: On the (\(1+3\)) threading of spacetime with respect to an arbitrary timelike vector field. Eur. Phys. J. C 75(4), 159 (2015). https://doi.org/10.1140/epjc/s10052-015-3390-0

    Article  ADS  Google Scholar 

  29. Gharechahi, R., Nouri-Zonoz, M., Tavanfar, A.: A tale of two velocities: threading vs slicing. Int. J. Geom. Methods Mod. Phys. 15, 1850047 (2018). https://doi.org/10.1142/S0219887818500470. arXiv:1510.02359 [gr-qc]

    Article  MathSciNet  MATH  Google Scholar 

  30. Reznik, B.: Origin of the thermal radiation in a solid state analog of a black hole. Phys. Rev. D 62, 044044 (2000). https://doi.org/10.1103/PhysRevD.62.044044. arXiv:gr-qc/9703076

    Article  ADS  Google Scholar 

  31. Rosquist, K.: A moving medium simulation of Schwarzschild black hole optics. Gen. Relativ. Gravit. 36, 1977 (2004). https://doi.org/10.1023/B:GERG.0000036055.82140.06. arXiv:gr-qc/0309104

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Giacomelli, L., Liberati, S.: Rotating black hole solutions in relativistic analogue gravity. Phys. Rev. D 96(6), 064014 (2017). https://doi.org/10.1103/PhysRevD.96.064014. arXiv:1705.05696 [gr-qc]

    Article  ADS  Google Scholar 

  33. Jacobson, T., Kang, G.: Conformal invariance of black hole temperature. Class. Quantum Gravit. 10, L201 (1993). https://doi.org/10.1088/0264-9381/10/11/002. arXiv:gr-qc/9307002

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Hossenfelder, S., Zingg, T.: Analogue gravity models from conformal rescaling. Class. Quantum Gravit. 34(16), 165004 (2017). https://doi.org/10.1088/1361-6382/aa7e12. arXiv:1703.04462 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Wiltshire, D.L., Visser, M., Scott, S.M. (eds.): The Kerr Spacetime: Rotating Black Holes in General Relativity. Cambridge University Press, Cambridge (2009)

    MATH  Google Scholar 

  36. Visser, M.: The Kerr Spacetime: A Brief Introduction. arXiv:0706.0622 [gr-qc]. Published in [35]

  37. Doran, C.: A New form of the Kerr solution. Phys. Rev. D 61, 067503 (2000). https://doi.org/10.1103/PhysRevD.61.067503. arXiv:gr-qc/9910099

    Article  ADS  MathSciNet  Google Scholar 

  38. Hamilton, A.J.S., Lisle, J.P.: The river model of black holes. Am. J. Phys. 76, 519 (2008). https://doi.org/10.1119/1.2830526. arXiv:gr-qc/0411060

    Article  ADS  Google Scholar 

Download references

Acknowledgements

MV acknowledges financial support from the Marsden Fund administered by the Royal Society of New Zealand. SS was also supported by a Victoria University of Wellington Ph.D. Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Schuster.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schuster, S., Visser, M. Bespoke analogue space-times: meta-material mimics. Gen Relativ Gravit 50, 55 (2018). https://doi.org/10.1007/s10714-018-2376-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-018-2376-2

Keywords

Navigation