Skip to main content
Log in

Simplified gravitational collapse with an interacting vacuum energy density

Curvature effects

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

The gravitational collapse of a spherical core, in which the fluid component interact with a growing vacuum energy density, filling an homogeneous and isotropic geometry with an arbitrary curvature parameter, is investigated. The complete set of exact solutions for all values of the free parameters are obtained, and the influence of the curvature term on the collapsing time, black hole mass and other physical quantities are also discussed in detail. We show that for the same initial conditions the total black hole mass depends only on the effective matter density parameter (including the vacuum component). It is also shown that the analytical condition to form a black hole, i.e. the formation of an apparent horizon, is not altered by the contribution of the curvature terms, however, the remaining physical quantities are quantitatively modified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Riess, A., et al.: Astron. J. 116, 1009 (1998)

    Article  ADS  Google Scholar 

  2. Perlmutter, S., et al.: Nature 391, 51 (1998)

    Article  ADS  Google Scholar 

  3. Kowalski, M., et al.: Astrophys. J. 686, 749 (2008)

    Article  ADS  Google Scholar 

  4. Amanullah, R., et al.: Astrophys. J. 716, 712 (2010)

    Article  ADS  Google Scholar 

  5. Spergel, D.N., et al.: Astrophys. J. Suppl. 148, 175 (2003)

    Article  ADS  Google Scholar 

  6. Spergel, D.N., et al.: Astrophys. J. Suppl. Ser. 170, 377 (2007)

    Article  ADS  Google Scholar 

  7. Komatsu, E., et al.: Astrophys. J. 192, 18 (2011)

    Article  Google Scholar 

  8. Peebles, P.J.E., Ratra, B.: Rev. Mod. Phys. 75, 559 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Padmanabhan, T.: Phys. Rep. 380, 235 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Lima, J.A.S.: Braz. J. Phys. 34, 194 (2004). astro-ph/0402109

  11. Copeland, E.J.M., Tsujikawa, S.: Int. J. Mod. Phys. D 15, 1753 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Frieman, J.A., Turner, M.S., Huterer, D.: Ann. Rev. Astron. Astrophys. 46, 385 (2008)

    Article  ADS  Google Scholar 

  13. Li, M., et al.: arXiv:1103.5870 (2011)

  14. Zeldovich, Y.B.: Usp. Fiz. Nauk 94, 209 (1968)

    Google Scholar 

  15. Zeldovich, Y.B.: Sov. Phys. Usp. 11, 381 (1968)

    Article  ADS  Google Scholar 

  16. Zee, A.: High energy physics. In: Kursunoglu, B., Mintz, S.L., Perlmutter, A. (eds.) Proceedings of the 20th Annual Orbis Scientiae, Plenum, New York (1985)

  17. Weinberg, S.: Rev. Mod. Phys. 61, 1 (1989)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Ratra, B., Peebles, P.J.E.: Phys. Rev. D 37, 3406 (1988)

    Article  ADS  Google Scholar 

  19. Wetterich, C.: Astron. Astrophys. 301, 321 (1995)

    ADS  Google Scholar 

  20. Ferreira, P.G., Joyce, M.: Phys. Rev. D 58, 023503 (1998)

    Article  ADS  Google Scholar 

  21. Poplawski, N.J.: arXiv:gr-qc/0608031v2 (2006)

  22. Ozer, M., Taha, M.O.: Phys. Lett. B 171, 363 (1986)

    Article  ADS  Google Scholar 

  23. Ozer, M., Taha, M.O.: Nucl. Phys. B 287, 776 (1987)

    Article  ADS  Google Scholar 

  24. Freese, K., et al.: Nucl. Phys. B 287, 797 (1987)

    Article  ADS  Google Scholar 

  25. Chen, W., Wu, Y.-S.: Phys. Rev. D 41, 695 (1990)

    Article  ADS  Google Scholar 

  26. Pavón, D.: Phys. Rev. D 43, 375 (1991)

    Article  ADS  Google Scholar 

  27. Carvalho, J.C., Lima, J.A.S., Waga, I.: Phys. Rev. D 46, 2404 (1992)

    Article  ADS  Google Scholar 

  28. Lima, J.A.S., Maia, J.M.F.: Phys. Rev. D 49, 5597 (1994)

    Article  ADS  Google Scholar 

  29. Lima, J.A.S., Trodden, M.: Phys. Rev. D 53, 4280 (1996). astro-ph/9508049

  30. Waga, I.: Astrophys. J. 414, 436 (1993)

    Article  ADS  Google Scholar 

  31. Bloomfield Torres, L.F., Waga, I.: Mon. Not. R. Astron. Soc. 279, 712 (1996)

    Article  ADS  Google Scholar 

  32. Arbab, A.I., Abdel-Rahman, A.M.M.: Phys. Rev. D 50, 7725 (1994)

    Article  ADS  Google Scholar 

  33. Overduin, J.M., Cooperstock, F.I.: Phys. Rev. D 58, 043506 (1998)

    Article  ADS  Google Scholar 

  34. Vishwakarma, R.G.: Class. Quantum Gravity 17, 3833 (2000)

    Article  ADS  MATH  Google Scholar 

  35. John, M.V., Joseph, K.B.: Phys. Rev. D 61, 087304 (2000)

    Article  ADS  Google Scholar 

  36. Bertolami, O., Martins, P.J.: Phys. Rev. D 61, 064007 (2000)

    Article  ADS  Google Scholar 

  37. Vishwakarma, R.G.: Class. Quantum Gravity 18, 1159 (2001)

    Article  ADS  MATH  Google Scholar 

  38. Al-Rawaf, A.S.: Mod. Phys. Lett. A 16, 633 (2001)

    Article  ADS  Google Scholar 

  39. Mak, M.K., Belinchon, J.A., Harko, T.: Int. J. Mod. Phys. D 14, 1265 (2002)

    Article  ADS  Google Scholar 

  40. Mbonye, M.R.: Int. J. Mod. Phys. A 18, 811 (2003)

    Article  ADS  MATH  Google Scholar 

  41. Cunha, J.V., Santos, R.C.: Int. J. Mod. Phys. D 13, 1321 (2004). astro-ph/0402169

  42. Alcaniz, J.S., Lima, J.A.S.: Phys. Rev. D 72, 063516 (2005). astro-ph/0507372

  43. Carneiro, S., Lima, J.A.S.: Int. J. Mod. Phys. A 20, 2465 (2005). gr-qc/0405141

  44. Opher, R., Pelinson, A.: Mon. Not. R. Astron. Soc. 362, 167 (2005)

    Article  ADS  Google Scholar 

  45. Carneiro, S., Pigozzo, C., Borges, H.A.: Phys. Rev. D 74, 023532 (2006)

    Article  ADS  Google Scholar 

  46. Maia, J.M.F., Lima, J.A.S.: Phys. Rev. D 65, 083513 (2002). arXiv:astro-ph/0112091

  47. Costa, F.E.M., Alcaniz, J.S., Maia, J.M.F.: Phys. Rev. D 77, 083516 (2008)

    Article  ADS  Google Scholar 

  48. Basilakos, S., Plionis, M., Solà, J.: Phys. Rev. D 82, 083512 (2010). arXiv:1005.5592

  49. Basilakos, S., Plionis, M., Lima, J.A.S.: Phys. Rev. D 82, 083517 (2010). arXiv:1006.3418

  50. Costa, F.E.M., Lima, J.A.S., Oliveira, F.A.: arXiv:1204.1864v1 [astro-ph.CO]

  51. Alcaniz, J.S., Borges, H.A., Carneiro, S., Fabris, J.C., Pigozzo, C., Zimdahl, W.: Phys. Lett. B 716, 165 (2012). arXiv:1201.5919

  52. Pradhan, A., Jaiswal, R., Khare, R.K.: Astrophys. Space Sci. 343, 489 (2013)

    Article  ADS  MATH  Google Scholar 

  53. Lima, J.A.S., Basilakos, S., Solà, J.: Mon. Not. R. Astron. Soc. 431, 923 (2013). arXiv:1209.2802 [gr-qc]

  54. Perico, E.L.D., Lima, J.A.S., Basilakos, S., Solà, J.: Phys. Rev. D (2013). In press, arXiv:1306.0591[astro-ph.CO]

  55. Campos, M., Lima, J.A.S.: Phys. Rev. D 86, 043012 (2012). arXiv:1207.5150 [gr-qc]

  56. Assad, M.J.D., Lima, J.A.S.: Gen. Relativ. Gravit. 20, 527 (1988). For a more detailed version see preprint from Brazilian Center of Research Physics, Brazil-CBPF/NF/050/86 (1986)

  57. Cai, R.-G., Wang, A.: Phys. Rev. D 73, 063005 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  58. Bertolami, O.: Nuovo Cimento 93B, 36 (1986)

    Article  ADS  Google Scholar 

  59. Carvalho, J.C., Lima, J.A.S.: Gen. Relativ. Gravit. 26, 909 (1994)

    Article  ADS  Google Scholar 

  60. Solà, J., Stefancic, H.: Mod. Phys. Lett. A 21, 479 (2006). arXiv:astro-ph/0507110

  61. Poplawski, N.J.: arXiv:gr-qc/0608031

  62. Piazza, F., Tsugikawa, S.: JCAP 07, 004 (2004)

    Article  ADS  Google Scholar 

  63. Harko, T., Lobo, F.S.N., Nojiri, S., Odintsov, S.D.: Phys. Rev. D 84, 024020 (2011)

    Article  ADS  Google Scholar 

  64. Shapiro, I.L., Solà, J.: JHEP 02, 006 (2002). hep-th/0012227

  65. Shapiro, I.L., Solà, J.: J. Phys. A 41, 164066 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  66. Solà, J.: J. Phys. Conf. Ser. 283, 012033 (2011). arXiv:1102.1815

  67. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover Publications, New York (1964)

    MATH  Google Scholar 

  68. Lima, J.A.S.: Am. J. Phys. 69, 1245 (2001). astro-ph/0109215

  69. Penrose, R.: Nuovo Cimento Soc. Ital. Fis. 1, 252 (1969)

    Article  ADS  Google Scholar 

  70. Santos, N.O.: MNRAS 216, 403–410 (1985)

    Article  ADS  Google Scholar 

  71. Hawking, S.W., Ellis, G.F.R.: The Large Scale Structure of Spacetime. Cambridge University Press, Cambridge (1973)

    Book  Google Scholar 

  72. Anninos, P., et al.: Phys. Rev. D 50, 3801 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  73. Cahill, M.E., McVittie, G.C.: J. Math. Phys. 11, 1382 (1970)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  74. McVittie, G.C.: Mon. Not. R. Astron. Soc. 93, 325 (1933)

    Article  ADS  Google Scholar 

  75. Poisson, E., Israel, W.: Phys. Rev. D 41, 1796 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  76. Wang, A., Villas da Rocha, J.F., Santos, N.O.: Phys. Rev. D 56, 7692 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  77. Villas da Rocha, J.F., Wang, A., Santos, N.O.: Phys. Lett. A 255, 213 (1999)

    Article  ADS  Google Scholar 

  78. Hayward, S.A.: Phys. Rev. D 70, 104027 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  79. Hayward, S.A.: Phys. Rev. Lett. 93, 251101 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  80. Deng, W., Zhang, B.: Astrophys. J. Lett. 783, L35 (2014)

    Article  ADS  Google Scholar 

  81. Macquart, J.P., et al.: Fast transients at cosmological distances with the SKA. In: Bourke, T.L., Braun R., Fender, R., Govoni, F., Green, J., Hoare, M., Jarvis M., Johnston-Hollitt, M., Keane, E., Koopmans, L., Kramer, M., Maartens, R., Macquart, J.-P., Mellema, G., Oosterloo, T., Prandoni, I., Pritchard, J., Santos, M., Seymour, N., Stappers, B., Staveley-Smith, L., Tian, W.W., Umana, G., Wagg J., (eds.) Advancing Astrophysics with the Square Kilometre Array, vol. 1, p. 857. SKA Organization Local, Giardini Naxos (2015)

  82. Kovács, Z., Harko, T.: Phys. Rev. D 82, 124047 (2010)

    Article  ADS  Google Scholar 

  83. Virbahadra, K.S., Ellis, G.F.R.: Phys. Rev. D 65, 103004 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  84. Joshi, P.S., Malafarina, D.: Int. J. Mod. Phys. D 20, 2641 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This paper is dedicated to the late Professor Mario José Delgado Assad (UFPB-Brazil). His earlier contribution to the unified approach for FRW type cosmologies motivated the present work. The author E.L.D.P. is partially supported by a grant from CAPES, and J.A.S.L. is partially supported by CNPq and FAPESP (No. 04/13668-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Campos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perico, E.L.D., Lima, J.A.S. & Campos, M. Simplified gravitational collapse with an interacting vacuum energy density. Gen Relativ Gravit 48, 8 (2016). https://doi.org/10.1007/s10714-015-2005-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-015-2005-2

Keywords

Navigation