Skip to main content
Log in

Convergence of extreme values of Poisson point processes at small times

  • Published:
Extremes Aims and scope Submit manuscript

Abstract

We study the behaviour of large values of extremal processes at small times, obtaining an analogue of the Fisher-Tippet-Gnedenko Theorem. Thus, necessary and sufficient conditions for local convergence of such maxima, linearly normalised, to the Fréchet or Gumbel distributions, are established. Weibull distributions are not possible limits in this situation. Moreover, assuming second order regular variation, we prove local asymptotic normality for intermediate order statistics, and derive explicit formulae for the normalising constants for tempered stable processes. We adapt Hill’s estimator of the tail index to the small time setting and establish its asymptotic normality under second order regular variation conditions, illustrating this with simulations. Applications to the fine structure of asset returns processes, possibly with infinite variation, are indicated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Stability of the results holds until the boundary case γ = 0.5 excluded in the definitions of Stable and CGMY models.

References

  • Aït-Sahalia, Y., Jacod, J.: Estimating the degree of activity of jumps in high frequency data. Ann. Statist. 37, 2202–2244 (2009)

    MathSciNet  MATH  Google Scholar 

  • Aït-Sahalia, Y., Jacod, J.: Testing whether jumps have finite or infinite activity. Ann. Statist. 39, 1689–1719 (2011)

    Article  MathSciNet  Google Scholar 

  • Aït-Sahalia, Y., Jacod, J.: Identifying the successive Blumenthal-Getoor indices of a discretely observed process. Ann. Statist. 40, 1430–1464 (2012)

    Article  MathSciNet  Google Scholar 

  • Bingham, N. H., Goldie, C. M., Teugels, J. L.: Regular Variation Encyclopedia of Mathematics and Its Applications, vol. 27. Cambridge University Press, Cambridge (1989)

    Google Scholar 

  • Blumenthal, R., Getoor, R.: Sample functions of stochastic processes with stationary independent increments. J. Math. Mech. 10, 493–516 (1961)

    MathSciNet  MATH  Google Scholar 

  • Buchmann, B., Fan, Y., Maller, R. A.: Distributional representations and dominance of a lévy process over its maximal jump processes. Bernoulli 22, 2325–2371 (2016)

    Article  MathSciNet  Google Scholar 

  • Buchmann, B., Ipsen, Y. F., Maller, R. A.: Functional laws for trimmed lévy processes. J. Appl. Probab. 54, 873–889 (2017)

    Article  MathSciNet  Google Scholar 

  • Buchmann, B., Maller, R. A., Resnick, S. I.: Processes of r th largest. Extremes 21, 485–508 (2018)

    Article  MathSciNet  Google Scholar 

  • Buchmann, B., Müller, G.: Modeling time series data with changing structure using nearly alpha-stable additive processes. Preprint. Australian National University and Univerität Augsburg (2019)

  • Carr, P., Geman, H., Madan, D. B., Yor, M.: The fine structure of asset returns: an empirical investigation. J. Bus. 75, 305–332 (2002)

    Article  Google Scholar 

  • Di Matteo, T., Aste, T. T., Dacorogna, M. M.: Long-term memories of developed and emerging markets: Using the scaling analysis to characterise their stage of development. J. Bank. Financ. 29, 827–851 (2005)

    Article  Google Scholar 

  • Drees, H.: On smooth statistical tail functionals. Scand. J. Statist. 25, 187–210 (1998)

    Article  MathSciNet  Google Scholar 

  • Dwass, M.: Extremal processes. Ann. Math. Statist. 35, 1718–1725 (1964)

    Article  MathSciNet  Google Scholar 

  • Dwass, M.: Extremal processes. II. Illinois J. Math. 10, 381–391 (1966)

    MathSciNet  MATH  Google Scholar 

  • Embrechts, P., Klüppelberg, C., Mikosch, T.: Modelling Extremal Events for Insurance and Finance Applications of Mathematics (New York), vol. 33. Springer, Berlin (1997)

    MATH  Google Scholar 

  • Fisher, R. A., Tippett, L. H. C.: Limiting forms of the frequency distribution of the largest or smallest member of a sample. Proc. Camb. Philos. Soc. 24, 180–190 (1928)

    Article  Google Scholar 

  • García, I., Klüppelberg, C., Müller, G.: Estimation of stable CARMA models with an application to electricity spot prices. Stat. Model. 11, 447–470 (2011)

    Article  MathSciNet  Google Scholar 

  • Geluk, J. L., de Haan, L.: Regular Variation, Extensions and Tauberian Theorems. CWI Tract 40 Stichting Mathematisch Centrum. Centrum voor Wiskunde en Informatica, Amsterdam (1987)

    Google Scholar 

  • Gnedenko, B. V.: Sur la distribution limite du terme maximum d’une série aléatoire. Ann. Math. 44, 423–453 (1943)

    Article  MathSciNet  Google Scholar 

  • de Haan, L., Stadtmüller, U.: Generalized regular variation of second order. J. Australian Math. Soc. (Ser. A) 61, 381–395 (1996)

    Article  MathSciNet  Google Scholar 

  • de Haan, L., Ferreira, A.: Extreme Value Theory. Springer, New York (2006)

    Book  Google Scholar 

  • Hill, B. M.: A simple general approach to inference about the tail of a distribution. Ann. Statist. 3, 1163–1174 (1975)

    Article  MathSciNet  Google Scholar 

  • Ipsen, Y. F., Kevei, P., Maller, R. A.: Convergence to stable limits for ratios of trimmed lévy processes and their jumps. Markov Process. Related Fields 24, 539–562 (2018)

    MathSciNet  MATH  Google Scholar 

  • Ipsen, Y., Maller, R. A., Resnick, S. I.: Ratios of ordered points of point processes with regularly varying intensity measures. Stoch. Process. Appl. 129, 205–222 (2019)

    Article  MathSciNet  Google Scholar 

  • Jacod, J.: Statistics and High-Frequency Data. Statistical Methods for Stochastic Differential Equations, Monogr. Statist. Appl. Probab., vol. 124, pp 191–310. CRC Press, Boca Raton (2012)

    Google Scholar 

  • Jacod, J., Protter, P.: Discretization of Processes Stochastic Modelling and Applied Probability, vol. 67. Springer, Heidelberg (2012)

    MATH  Google Scholar 

  • Jacod, J., Todorov, V.: Limit theorems for integrated local empirical characteristic exponents from noisy high-frequency data with application to volatility and jump activity estimation. Ann. Appl. Probab. 28, 511–576 (2018)

    Article  MathSciNet  Google Scholar 

  • Kevei, P., Mason, D. M.: The limit distribution of ratios of jumps and sums of jumps of subordinators. ALEA Lat. Am. J. Probab. Math. Stat. 11, 631–642 (2014)

    MathSciNet  MATH  Google Scholar 

  • Kozubowski, T. J., Podgórski, K., Samorodnitsky, G.: Tails of Lévy measure of geometric stable random variables. Extremes 1, 367–378 (1999)

    Article  MathSciNet  Google Scholar 

  • Maller, R. A.: Strong laws at zero for trimmed Lévy processes. Electron. J. Probab. 20, 1–24 (2015)

    Article  Google Scholar 

  • Maller, R. A.: Small time almost sure comparisons between a Lévy process and its maximal jump processes. Markov Process. Related Fields 22, 775–806 (2016)

    MathSciNet  MATH  Google Scholar 

  • Maller, R. A., Schmidli, P. C.: Small-time almost-sure behaviour of extremal processes. Adv. Appl. Prob. 49, 411–429 (2017)

    Article  MathSciNet  Google Scholar 

  • von Mises, R.: La Distribution de la plus grande de n valeurs. Rev. Math. Union Interbalcanique 1, 141–160. Reproduced in: Selected Papers of Richard von Mises, Amer. Math. Soc. 2, 271–294 (1964)

  • Resnick, S. I., Rubinovitch, M.: The structure of extremal processes. Adv. Appl. Probab. 5, 287–307 (1973)

    Article  MathSciNet  Google Scholar 

  • Resnick, S. I., Rubinovitch, M.: The behavior near the origin of the supremum functional in a process with stationary independent increments. J. Appl. Probab. 12, 159–160 (1975)

    Article  MathSciNet  Google Scholar 

  • Resnick, S. I.: Extreme Values, Regular Variation, and Point Processes. Springer Series in Operations Research and Financial Engineering Reprint of the 1987 Original. Springer, New York (1987)

    Google Scholar 

  • Resnick, S. I.: Heavy-Tail Phenomena: Probabilistic and Statistical Modeling. Springer, New York (2007)

    MATH  Google Scholar 

  • Sato, K.: Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  • Tankov, P.: Financial Modelling with Jumps Processes. Chapman and Hall/CRC Financial Mathematics Series (2003)

  • Todorov, V.: Jump activity estimation for pure-jump semimartingales via self-normalized statistics. Ann. Statist. 43, 1831–1864 (2015)

    Article  MathSciNet  Google Scholar 

  • Todorov, V., Tauchen, G.: Activity signature functions for high-frequency data analysis. J. Econ. 154, 125–138 (2010)

    Article  MathSciNet  Google Scholar 

  • Vervaat, W.: Functional limit theorems for processes with positive drift and their inverses. Z. Wahrsch. verw Gebiete 23, 245–253 (1971)

    Article  MathSciNet  Google Scholar 

  • Woerner, J. H. C.: Analyzing the Fine Structure of Continuous Time Stochastic Processes. In: Dalang, R., Dozzi, M., Russo, F (eds.) Seminar on Stochastic Analysis, Random Fields and Applications VI. Progress in Probability, vol. 63. Springer, Basel (2011)

Download references

Acknowledgments

We would like to thank two anonymous referees and the AE for valuable suggestions that significantly improved the presentation of the paper. We thank Kevin Lu for his careful reading of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Ferreira.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Research partially supported by Australian Research Council grant DP160104737, and by “Fundação para a Ciência e a Tecnologia”, Portugal: UIDB/04621/2020 of CEMAT/IST-ID and UIDB/00006/2020, and SFRH/BSAB/142912/2018.

Appendices

Appendix:

A Inverse of monotone functions

We employ the conventions (x,x) = for \(-\infty \le x \le \infty \), and the infimum of the empty set is taken as \(\infty \) (see Resnick (1987), Sect 0.2 for properties of inverse functions). Let τ and τr be such that \(-\infty \le \tau _{\ell }<\tau _{r}\le \infty \).

Define left (resp., right)-continuous inverses of monotone functions as follows: when \(f:(l,r)\to \mathbb {R}\) is a non-decreasing (resp., non-increasing) function, set

$$ f^{\leftarrow,(l,r)}(y)=\inf\{x\in(l,r):f(x)\ge y \ \text{(resp.,}\ f(x) \le y)\},\ y\in\mathbb{R} . $$
(A.1)

For l < xl < xr < r and a monotone function \(f:(l,r)\to \mathbb {R}\), note

$$ f^{\leftarrow,(l,r)}(y)=f^{\leftarrow,(x_{l},x_{r})}(y) $$
(A.2)

for all \(y\in \mathbb {R}\), provided also f(xl+) ∧ f(xr−) < y < f(xl+) ∨ f(xr−).

Let \({\mathcal {C}}(f)\) be the continuity points of a function f. We need a result ensuring continuity of the inversion (see de Haan and Ferreira (2006) and Resnick (1987), Lemma 1.1.1 and Proposition 0.1, respectively).

Lemma A.1

Let \(-\infty \le l<r\le \infty \). For \(n=0,1,2,\dots \) let \(f_{n}:(l,r)\to \mathbb {R}\) be non-decreasing or non-increasing. If \(\lim _{n\to \infty }f_{n}(x)=f_{0}(x)\) for all \(x\in (l,r)\cap {\mathcal {C}}(f_{0})\) then also \(\lim _{n\to \infty }f_{n}^{\leftarrow }(y)=f_{0}^{\leftarrow }(y)\) for all \(y\in J\cap {\mathcal {C}}(f_{0}^{\leftarrow })\), where

$$J := \big(f_{0}(l+)\wedge f_{0}(r-),f_{0}(l+)\vee f_{0}(r-)\big) \subseteq \mathbb{R} .$$

B Regular variation

A function \(f:(0,r)\to \mathbb {R}\) is called regularly varying (Bingham et al. 1989; Geluk and de Haan 1987) with index \(\alpha \in \mathbb {R}\) at 0, notation \(f\in RV_{\alpha }^{0}\), provided f is a Borel function, satisfying

$$\lim_{t\downarrow 0}f(ut)/f(t)=u^{\alpha} ,\qquad u>0 .$$

A function g is called regularly varying with index α at \(\infty \), denoted \(g\in RV_{\alpha }^{\infty }\), provided \(t\mapsto f(t):=g(1/t)\in RV_{-\alpha }^{0}\). If α = 0 the functions are said to be slowly varying.

C Cauchy functional equation

We shall employ the following variant of the Cauchy functional equation (for a proof see de Haan and Ferreira (2006), pp.7–8).

Lemma C.1

Let \(f,h:(0,\infty )\to \mathbb {R}\) be functions such that 0∉range(h). Assume that f(1) = 0, f is monotone and f is non-constant.

If f(xy) = f(x)h(y) + f(y) for all x,y > 0 then there exists \(\gamma \in \mathbb {R}\) such that f(x) = f(1)(xγ − 1)/γ for x > 0.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buchmann, B., Ferreira, A. & Maller, R.A. Convergence of extreme values of Poisson point processes at small times. Extremes 24, 501–529 (2021). https://doi.org/10.1007/s10687-021-00409-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10687-021-00409-3

Keywords

AMS 2000 Subject Classifications

Navigation