Skip to main content
Log in

Potential exposure to metals and health risks of metal intake from Tieguanyin tea production in Anxi, China

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

The metal content of Tieguanyin tea from Anxi, Southeast China, was studied. Leaching experiments were designed based on the local tea-drinking habits, and tea infusions were prepared using three types of water and two methods of soaking tea. Twelve metals (Cd, As, Cr, Pb, Se, Sb, Ag, Tl, Cu, Zn, Be, and Ba) were measured by inductively coupled plasma mass spectrometry (ICP-MS), and a human health risk assessment was performed. The results showed that the quality of water used for steeping tea has a direct effect on the leaching concentrations of metals in the tea infusion and this effect can be reduced by using pure water or commercially available drinking water. Further, the two tea-soaking methods used by local residents can reduce the metal intake. The health risk assessment determined that the carcinogenic risk values of Cr, As, and Pb (Cr > Pb > As) were within an acceptable range (10−7–10−4); therefore, the concentrations of these metals in tea infusions do not pose substantial carcinogenic risk to tea drinkers. The results also indicate that the high concentrations of Tl in the tea infusions pose a substantial noncarcinogenic risk and may result from the dissolution characteristics of Tl and the water quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Brzezicha-Cirocka, J., Grembecka, M., & Szefer, P. (2016). Monitoring of essential and heavy metals in green tea from different geographical origins. Environmental Monitoring and Assessment, 188, 183.

    Article  CAS  Google Scholar 

  • Chen, S. Z., Yan, J. T., Li, J. F., et al. (2017). Solid phase extraction with titanium dioxide nanofibers combined with dispersive liquid-liquid microextraction for speciation of thallium prior to electrothermal vaporization ICP-MS. Microchimica Acta, 184, 2797–2803.

    Article  CAS  Google Scholar 

  • Dawodu, M. O., Obimakinde, S. O., & Olutona, G. O. (2013). Trace metal concentrations in some tea leaves consumed in Ibadan, Nigeria. African Journal of Agricultural Research, 8(46), 5771–5775.

    Google Scholar 

  • Deng, H., Li, M. S., & Zhou, Y. C. (2012). Soil metal contamination and fractionation of tea plantations: Case studies in a normal tea garden and in a restored mineland tea stand. Polish Journal of Environmental Studies, 21(5), 1223–1228.

    Google Scholar 

  • Feng, J., Tang, H., Chen, D. Z., et al. (2015). Monitoring and risk assessment of pesticide residues in tea samples from China. Human and Ecological Risk Assessment, 21, 169–183.

    Article  CAS  Google Scholar 

  • Gil, R. A., Pacheco, P. H., Smichowski, P., et al. (2009). Speciation analysis of thallium using electrothermal AAS following on-line pre-concentration in a microcolumn filled with multiwalled carbon nanotubes. Microchimica Acta, 167(3–4), 187.

    Article  CAS  Google Scholar 

  • Kazantzis, G. (2000). Thallium in the environment and health effects. Environmental Geochemistry and Health, 22, 275.

    Article  CAS  Google Scholar 

  • Lan, C., & Lin, T. (2005). Acute toxicity of trivalent thallium compounds to Daphnia magna. Ecotoxicology and Environmental Safety, 61(3), 432.

    Article  CAS  Google Scholar 

  • Li, L. H., Fu, Q. L., Achal, V., et al. (2015). A comparison of the potential health risk of aluminum and heavy metals in tea leaves and tea infusion of commercially available green tea in Jiangxi, China. Environmental Monitoring and Assessment, 187, 228.

    Article  CAS  Google Scholar 

  • Li, Z. Y., Ma, Z. W., Kuijp, T. J., et al. (2014). A review of soil heavy metal pollution from mines in China:pollution and health risk assessment. Science of the Total Environment, 468–469, 843–853.

    Article  CAS  Google Scholar 

  • Lu, C., Liu, X., Dong, F., et al. (2010). Simultaneous determination of pyrethrins residues in teas by ultra-performance liquid chromatography/tandem mass spectrometry. Analytica Chimica Acta, 678(1), 56–62.

    Article  CAS  Google Scholar 

  • Man, Y. B., Sun, X. L., Zhao, Y. G., et al. (2010). Health risk assessment of abandoned agricultural soils based on heavy metal contents in Hong Kong, the world’s most populated city. Environment International, 36, 570–576.

    Article  CAS  Google Scholar 

  • Matsuura, H., Hokura, A., Katsuki, F., et al. (2001). Multielement determination and speciation of major-to-trace elements in black tea leaves by ICP-AES and ICP-MS with the acid of size exclusion chromatography. Analytical Sciences, 17, 391–398.

    Article  CAS  Google Scholar 

  • Meza-Montenegro, M. M., Gandolfi, A. J., Santana-Alcántar, M. E., et al. (2012). Metals in residential soils and cumulative risk assessment in Yaqui and Mayo agricultural valleys, northern Mexico. Science of the Total Environment, 433, 472–481.

    Article  CAS  Google Scholar 

  • Nkansah, M. A., Opoku, F., & Ackumey, A. A. (2016). Risk assessment of mineral and heavy metal content of selected tea products from the Ghanaian market. Environmental Monitoring and Assessment, 188, 332.

    Article  CAS  Google Scholar 

  • Rashid, M. H., Fardous, Z., Chowdhury, M. A. Z., et al. (2016). Determination of heavy metals in the soils of tea plantations and in fresh and processed tea leaves: An evaluation of six digestion methods. Chemistry Central Journal, 10(1), 7.

    Article  CAS  Google Scholar 

  • Sasmaz, A., Sen, O., Kaya, G., et al. (2007). Distribution of thallium in soil and plants growing in the keban mining district of Turkey and determined by ICP-MS. Atomic Spectroscopy, 28(5), 157.

    CAS  Google Scholar 

  • Schunk, P. F. T., Kalil, I. C., Pimentel-Schmitt, E. F., et al. (2016). ICP-OES and micronucleus test to evaluate heavy metal contamination in commercially available Brazilian Herbal Teas. Biological Trace Element Research, 172, 258–265.

    Article  CAS  Google Scholar 

  • Shekoohiyan, S., Ghoochani, M., Mohagheghian, A., et al. (2012). Determination of lead, cadmium and arsenic in infusion tea cultivated in north of Iran. Iranian Journal of Environmental Health Sciences & Engineering, 9, 37.

    Article  CAS  Google Scholar 

  • Shen, F. M., & Chen, H. W. (2008). Element composition of tea leaves and tea infusions and its impact on health. Bulletin of Environmental Contamination and Toxicology, 80, 300–304.

    Article  CAS  Google Scholar 

  • Sun, J. W., Yu, R. L., Hu, G. R., et al. (2017). Bioavailability of heavy metals in soil of the Tieguanyin Tea Garden, Southeastern China. Acta Geochimica, 38(4), 1566–1575.

    Google Scholar 

  • U.S. Environmental Protection Agency. (1989). Risk assessment guidance for superfund, vol. I: Human health evaluation manual Part A Interim Final. http://www.epa.gov/swerrims/riskassessment/risk_superfund.html.

  • U.S. Environmental Protection Agency. (1996). Soil screening guidance: Technical background document. https://www.epa.gov/superfund/superfund-soil-screening-guidance.

  • U.S. Environmental Protection Agency. (2002). Supplemental guidance for developing soil screening levels for super fund Sites [EB/OL]. 2001-03-27. http://www.epa.gov/superfund/health/conmedia/soil/pdfs/ssgmarch01.pdf.

  • Wu, S., Peng, S. Q., Zhang, X. X., et al. (2015). Levels and health risk assessments of metals in urban soils in Dongguan, China. Journal of Geochemical Exploration, 148, 71–78.

    Article  CAS  Google Scholar 

  • Xu, X. Y., Cheng, B., Wu, C. S., et al. (2014). A survey on the safety and behavior habits of drinking water in Fuzhou. Journal of Environment and Health, 31(9), 813–814. (in Chinese).

    CAS  Google Scholar 

  • Zayed, A., Lytle, C. M., & Terry, N. (1998). Accumulation and volatilization of different chemical species of selenium by plants. Planta, 206(2), 284–292.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation of China (21777049, 41807410), the Natural Science Foundation of Fujian Province (2016J01065), the State Key Laboratory of Environmental Geochemistry (SKLEG2016901), the Fujian Provincial Key Laboratory of Ecology-Toxicological Effects & Control for Emerging Contaminants (PY17003), Science and technology project of Quanzhou (2018Z020), the Key Laboratory of Marine Biogenetic Resources (HY201806), and the National Undergraduate Innovation and Entrepreneurship Training Program (201810399009). The authors express heartfelt thanks to the colleagues who participated in the sampling work. Thanks to anonymous reviewers and their constructive comments. We would like to thank Editage (www.editage.com) for English language editing and publication support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gongren Hu or Yunfeng Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, J., Hu, G., Liu, K. et al. Potential exposure to metals and health risks of metal intake from Tieguanyin tea production in Anxi, China. Environ Geochem Health 41, 1291–1302 (2019). https://doi.org/10.1007/s10653-018-0212-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-018-0212-y

Keywords

Navigation