Skip to main content

Advertisement

Log in

Cytotoxic effect of menadione and sodium orthovanadate in combination on human glioma cells

  • PRECLINICAL STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

Gliomas are the most common primary brain tumor, and their treatment is still a challenge. Here, we evaluated the antiproliferative effect of a novel combination of two potent oxidative stress enhancers: menadione (M) and sodium orthovanadate (SO). We observed both short-term and prolonged growth inhibitory effects of M or SO alone as well as in combination (M:SO) on DBTRG.05MG human glioma cells. A stronger antiproliferative effect was observed in the short-term proliferation assay with the M:SO combination compared to either investigated agent alone. In the long-term proliferation assay, a 10-day exposure to M:SO at concentrations of 10 μM:17.5 μM or 17.5 μM:10 μM was enough to kill 100% of the cells; no cell regrowth was observed after re-incubation in drug-free media. When used in combination, the single concentration of M and SO could be decreased by 2.5- to 5-fold of those used for each experimental drug alone and still obtain a similar antiproliferative effect. The underlying molecular mechanism was investigated by co-incubating M:SO with dithiothreitol (DTT) and genistein. Both substances partially neutralized the effects of the M:SO combination, showing additive effects. This observation suggests a role of oxidative stress and tyrosine kinase stimulation in the M:SO cytotoxic effect. Our results indicate that M:SO combination is an attractive alternative for glioma treatment that encourages further study. The neutralizing effects of genistein and DTT reveal a possibility for their use in the minimization of potential M:SO systemic toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Khan MK, Hunter GK, Vogelbaum M, Suh JH, Chao ST (2009) Evidence-based adjuvant therapy for gliomas: current concepts and newer developments. Indian J Cancer 46:96–107

    Article  CAS  PubMed  Google Scholar 

  2. Deltour I, Johansen C, Auvinen A, Feychting M, Klaeboe L, Schüz J (2009) Time trends in brain tumor incidence rates in Denmark, Finland, Norway, and Sweden, 1974–2003. J Natl Cancer Inst 101:1721–1724

    Article  PubMed  Google Scholar 

  3. Donelli MG, Zucchetti M, D’Incalci M (1992) Do anticancer agents reach the tumor target in the human brain? Cancer Chemother Pharmacol 30:251–260

    Article  CAS  PubMed  Google Scholar 

  4. Juillerat-Jeanneret L (2008) The targeted delivery of cancer drugs across the blood-brain barrier: chemical modifications of drugs or drug-nanoparticles? Drug Discov Today 13:1099–1106

    Article  CAS  PubMed  Google Scholar 

  5. Laquintana V, Trapani A, Denora N, Wang F, Gallo JM, Trapani G (2009) New strategies to deliver anticancer drugs to brain tumors. Expert Opin Drug Deliv 6:1017–1032

    Article  CAS  PubMed  Google Scholar 

  6. Jiang H, Shang X, Wu H, Huang G, Wang Y, Al-Holou S, Gautam SC, Chopp M (2010) Combination treatment with resveratrol and sulforaphane induces apoptosis in human U251 glioma cells. Neurochem Res 35:152–161

    Article  CAS  PubMed  Google Scholar 

  7. Wu H, Jiang H, Lu D, Xiong Y, Qu C, Zhou D, Mahmood A, Chopp M (2009) Effect of simvastatin on glioma cell proliferation, migration, and apoptosis. Neurosurgery 65:1087–1096

    Article  PubMed  Google Scholar 

  8. Cruz M, Siden Å, Tasat DR, Yakisich JS (2010) Are all glioma cells cancer stem cells? J Cancer Sci Ther 2:100–106

    Article  Google Scholar 

  9. Laks DR, Visnyei K, Kornblum HI (2010) Brain tumor stem cells as therapeutic targets in models of glioma. Yonsei Med J 51:633–640

    Article  PubMed  Google Scholar 

  10. Yakisich JS, Ohlsson Lindblom I, Siden A, Cruz MH (2009) Rapid inhibition of ongoing DNA synthesis in human glioma tissue by genistein. Oncol Rep 22:569–574

    Article  CAS  PubMed  Google Scholar 

  11. Matzno S, Yamaguchi Y, Akiyoshi T, Nakabayashi T, Matsuyama K (2008) An attempt to evaluate the effect of vitamin K3 using as an enhancer of anticancer agents. Biol Pharm Bull 31:1270–1273

    Article  CAS  PubMed  Google Scholar 

  12. Chlebowski RT, Dietrich M, Akman S, Block JB (1985) Vitamin K3 inhibition of malignant murine cell growth and human tumor colony formation. Cancer Treat Rep 69:527–532

    CAS  PubMed  Google Scholar 

  13. Akman SA, Doroshow JH, Dietrich MF, Chlebowski RT, Block JS (1987) Synergistic cytotoxicity between menadione and dicumarol vs. murine leukemia L1210. J Pharmacol Exp Ther 240:486–491

    CAS  PubMed  Google Scholar 

  14. Duthie SJ, Grant MH (1989) The toxicity of menadione and mitozantrone in human liver-derived Hep G2 hepatoma cells. Biochem Pharmacol 38:1247–1255

    Article  CAS  PubMed  Google Scholar 

  15. Okayasu H, Ishihara M, Satoh K, Sakagami H (2001) Cytotoxic activity of vitamins K1, K2 and K3 against human oral tumor cell lines. Anticancer Res 21:2387–2392

    CAS  PubMed  Google Scholar 

  16. Tetef M, Margolin K, Ahn C, Akman S, Chow W, Leong L, Morgan RJ Jr, Raschko J, Somlo G, Doroshow JH (1995) Mitomycin C and menadione for the treatment of lung cancer: a phase II trial. Invest New Drugs 13:157–162

    Article  CAS  PubMed  Google Scholar 

  17. Akiyoshi T, Matzno S, Sakai M, Okamura N, Matsuyama K (2009) The potential of vitamin K3 as an anticancer agent against breast cancer that acts via the mitochondria-related apoptotic pathway. Cancer Chemother Pharmacol 65:143–150

    Article  CAS  PubMed  Google Scholar 

  18. Baran I, Ganea C, Scordino A, Musumeci F, Barresi V, Tudisco S, Privitera S, Grasso R, Condorelli DF, Ursu I (2010) Effects of menadione, hydrogen peroxide, and quercetin on apoptosis and delayed luminescence of human leukemia Jurkat T-cells. Cell Biochem Biophys 58:169–179

    Article  CAS  PubMed  Google Scholar 

  19. Oztopçu P, Kabadere S, Mercangoz A, Uyar R (2004) Comparison of vitamins K1, K2 and K3 effects on growth of rat glioma and human glioblastoma multiforme cells in vitro. Acta Neurol Belg 104:106–110

    PubMed  Google Scholar 

  20. Prasad KN, Edwards-Prasad J, Sakamoto A (1981) Vitamin K3 (menadione) inhibits the growth of mammalian tumor cells in culture. Life Sci 29:1387–1392

    Article  CAS  PubMed  Google Scholar 

  21. Vita MF, Nagachar N, Avramidis D, Delwar ZM, Cruz MH, Siden A, Paulsson KM, Yakisich JS (2010) Pankiller effect of prolonged exposure to menadione on glioma cells: potentiation by vitamin C. Invest New Drugs, in press

  22. Avramidis D, Cruz M, Sidén Å, Tasat DR, Yakisich JS (2009) Regrowth concentration zero (RC0) as complementary endpoint parameter to evaluate compound candidates during preclinical drug development for cancer treatment. J Cancer Sci Ther 1:019–024

    Article  Google Scholar 

  23. Brière JJ, Schlemmer D, Chretien D, Rustin P (2004) Quinone analogues regulate mitochondrial substrate competitive oxidation. Biochem Biophys Res Commun 316:1138–1142

    Article  PubMed  Google Scholar 

  24. Floreani M, Carpenedo F (1992) One- and two-electron reduction of menadione in guinea-pig and rat cardiac tissue. Gen Pharmacol 23:757–762

    Article  CAS  PubMed  Google Scholar 

  25. Hu OY, Wu CY, Chan WK, Wu FY, Whang-Peng J (1996) A pharmacokinetic study with the high-dose anticancer agent menadione in rabbits. Biopharm Drug Dispos 17:493–499

    Article  CAS  PubMed  Google Scholar 

  26. Lamson DW, Plaza SM (2003) The anticancer effects of vitamin K. Altern Med Rev 8:303–318

    PubMed  Google Scholar 

  27. Ham SW, Song JH, Kim HI, Jin S (2000) Mechanism of cell cycle arrest by menadione. Bull Korean Chem Soc 21:1173–1174

    CAS  Google Scholar 

  28. Holko P, Ligeza J, Kisielewska J, Kordowiak AM, Klein A (2008) The effect of vanadyl sulphate (VOSO4) on autocrine growth of human epithelial cancer cell lines. Pol J Pathol 59:3–8

    CAS  PubMed  Google Scholar 

  29. Kordowiak AM, Klein A, Goc A, Dabroś W (2007) Comparison of the effect of VOSO4, Na3VO4 and NaVO3 on proliferation, viability and morphology of H35-19 rat hepatoma cell line. Pol J Pathol 58:51–57

    CAS  PubMed  Google Scholar 

  30. Klein A, Holko P, Ligeza J, Kordowiak AM (2008) Sodium orthovanadate affects growth of some human epithelial cancer cells (A549, HTB44, DU145). Folia Biol Krakow 56:115–121

    Article  CAS  PubMed  Google Scholar 

  31. Capella LS, Gefé MR, Silva EF, Affonso-Mitidieri O, Lopes AG, Rumjanek VM, Capella MA (2002) Mechanisms of vanadate-induced cellular toxicity: role of cellular glutathione and NADPH. Arch Biochem Biophys 406:65–72

    Article  CAS  PubMed  Google Scholar 

  32. Capella MA, Capella LS, Valente RC, Gefé M, Lopes AG (2007) Vanadate-induced cell death is dissociated from H2O2 generation. Cell Biol Toxicol 23:413–420

    Article  CAS  PubMed  Google Scholar 

  33. Srivastava AK, Mehdi MZ (2005) Insulino-mimetic and anti-diabetic effects of vanadium compounds. Diabet Med 22:2–13

    Article  CAS  PubMed  Google Scholar 

  34. Byrne AR, Kosta L (1978) Vanadium in foods and in human body fluids and tissues. Sci Total Environ 10:17–30

    Article  CAS  PubMed  Google Scholar 

  35. Srivastava AK (2000) Anti-diabetic and toxic effects of vanadium compounds. Mol Cell Biochem 206:177–182

    Article  CAS  PubMed  Google Scholar 

  36. Uthus EO, Nielsen FH (1990) Effect of vanadium, iodine and their interaction on growth, blood variables, liver trace elements and thyroid status indices in rats. Magnes Trace Elem 9:219–226

    CAS  PubMed  Google Scholar 

  37. Shafrir E, Spielman S, Nachliel I, Khamaisi M, Bar-On H, Ziv E (2001) Treatment of diabetes with vanadium salts: general overview and amelioration of nutritionally induced diabetes in the Psammomys obesus gerbil. Diab Metab Res Rev 17:55–66

    Article  CAS  Google Scholar 

  38. Gordon JA (1991) Use of vanadate as protein-phosphotyrosine phosphatase inhibitor. Meth Enzymol 201:477–482

    Article  CAS  PubMed  Google Scholar 

  39. Abdelmohsen K, Patak P, Von Montfort C, Melchheier I, Sies H, Klotz LO (2004) Signaling effects of menadione: from tyrosine phosphatase inactivation to connexin phosphorylation. Meth Enzymol 378:258–272

    Article  CAS  PubMed  Google Scholar 

  40. Nakayama T, Asami S, Ono S, Miura M, Hayasaka M, Yoshida Y, Toriyama M, Motohashi S, Suzuki T (2009) Effect of cell differentiation for neuroblastoma by vitamin K analogs. Jpn J Clin Oncol 39:251–259

    Article  PubMed  Google Scholar 

  41. McDonagh B, Sheehan D (2007) Effect of oxidative stress on protein thiols in the blue mussel Mytilus edulis: proteomic identification of target proteins. Proteomics 7:3395–3403

    Article  CAS  PubMed  Google Scholar 

  42. Pani G, Colavitti R, Bedogni B, Anzevino R, Borrello S, Galeotti T (2000) A redox signaling mechanism for density-dependent inhibition of cell growth. J Biol Chem 275:38891–38899

    Article  CAS  PubMed  Google Scholar 

  43. Franken NA, Rodermond HM, Stap J, Haveman J, van Bree C (2006) Clonogenic assay of cells in vitro. Nat Protoc 1:2315–2319

    Article  CAS  PubMed  Google Scholar 

  44. Sankar A, Thomas DG, Darling JL (1999) Sensitivity of short-term cultures derived from human malignant glioma to the anti-cancer drug temozolomide. Anticancer Drugs 10:179–185

    Article  CAS  PubMed  Google Scholar 

  45. Sakai A (1997) Orthovanadate, an inhibitor of protein tyrosine phosphatases, acts more potently as a promoter than as an initiator in the BALB/3T3 cell transformation. Carcinogenesis 18:1395–1399

    Article  CAS  PubMed  Google Scholar 

  46. Cortizo AM, Bruzzone L, Molinuevo S, Etcheverry SB (2000) A possible role of oxidative stress in the vanadium-induced cytotoxicity in the MC3T3E1 osteoblast and UMR106 osteosarcoma cell lines. Toxicology 147:89–99

    Article  CAS  PubMed  Google Scholar 

  47. Navis AC, van den Eijnden M, Schepens JT, Hooft van Huijsduijnen R, Wesseling P, Hendriks WJ (2010) Protein tyrosine phosphatases in glioma biology. Acta Neuropathol 119:157–175

    Article  CAS  PubMed  Google Scholar 

  48. Nutter LM, Cheng AL, Hung HL, Hsieh RK, Ngo EO, Liu TW (1991) Menadione: spectrum of anticancer activity and effects on nucleotide metabolism in human neoplastic cell lines. Biochem Pharmacol 41:1283–1292

    Article  CAS  PubMed  Google Scholar 

  49. Lim D, Morgan RJJ, Akman S, Margolin K, Carr BI, Leong L, Odujinrin O, Doroshow JH (2005) Phase I trial of menadiol diphosphate (vitamin K3) in advanced malignancy. Invest New Drugs 23:235–239

    Article  PubMed  Google Scholar 

  50. Öztopcu-Vatan P, Kabadere S (2007) The effects of menadione on rat glial cell proliferation. J Neurol Sci Turk 24:25–28

    Google Scholar 

  51. Hasegawa Y, Morioka M, Hasegawa S, Matsumoto J, Kawano T, Kai Y, Yano S, Fukunaga K, Kuratsu J (2006) Therapeutic time window and dose dependence of neuroprotective effects of sodium orthovanadate following transient middle cerebral artery occlusion in rats. J Pharmacol Exp Ther 317:875–881

    Article  CAS  PubMed  Google Scholar 

  52. Száraz P, Bánhegyi G, Benedetti A (2010) Altered redox state of luminal pyridine nucleotides facilitates the sensitivity towards oxidative injury and leads to endoplasmic reticulum stress dependent autophagy in HepG2 cells. Int J Biochem Cell Biol 42:157–166

    Article  PubMed  Google Scholar 

  53. Niemczyk E, Majczak A, Hallmann A, Kedzior J, Woźniak M, Wakabayashi T (2004) A possible involvement of plasma membrane NAD(P)H oxidase in the switch mechanism of the cell death mode from apoptosis to necrosis in menadione-induced cell injury. Acta Biochim Polonica 51:1015–1022

    Google Scholar 

  54. Wochna A, Niemczyk E, Kurono C, Masaoka M, Kedzior J, Słomińska E, Lipiński M, Wakabayashi T (2007) A possible role of oxidative stress in the switch mechanism of the cell death mode from apoptosis to necrosis-studies on rho0 cells. Mitochondrion 7:119–124

    Article  CAS  PubMed  Google Scholar 

  55. Gilloteaux J, Jamison JM, Lorimer HE, Jarjoura D, Taper HS, Calderon PB, Neal DR, Summers JL (2004) Autoschizis: a new form of cell death for human ovarian carcinoma cells following ascorbate:menadione treatment. Nuclear and DNA degradation. Tissue Cell 36:197–209

    Article  CAS  PubMed  Google Scholar 

  56. Verrax J, Cadrobbi J, Delvaux M, Jamison JM, Gilloteaux J, Summers JL, Taper HS, Buc Calderon P (2003) The association of vitamins C and K3 kills cancer cells mainly by autoschizis, a novel form of cell death. Basis for their potential use as coadjuvants in anticancer therapy. Eur J Med Chem 38:451–457

    Article  CAS  PubMed  Google Scholar 

  57. Morita A, Yamamoto S, Wang B, Tanaka K, Suzuki N, Aoki S, Ito A, Nanao T, Ohya S, Yoshino M (2010) Sodium orthovanadate inhibits p53-mediated apoptosis. Cancer Res 70:257–265

    Article  CAS  PubMed  Google Scholar 

  58. Morita A, Zhu J, Suzuki N, Enomoto A, Matsumoto Y, Tomita M, Suzuki T, Ohtomo K, Hosoi Y (2006) Sodium orthovanadate suppresses DNA damage-induced caspase activation and apoptosis by inactivating p53. Cell Death Differ 13:499–511

    Article  CAS  PubMed  Google Scholar 

  59. Spinozzi F, Pagliacci MC, Migliorati G, Moraca R, Grignani F, Riccardi C, Nicoletti I (1994) The natural tyrosine kinase inhibitor genistein produces cell cycle arrest and apoptosis in Jurkat T-leukemia cells. Leuk Res 18:431–439

    Article  CAS  PubMed  Google Scholar 

  60. Friso A, Tomanin R, Salvalaio M, Scarpa M (2010) Genistein reduces glycosaminoglycan levels in a mouse model of mucopolysaccharidosis type II. Br J Pharmacol 159:1082–1091

    Article  CAS  PubMed  Google Scholar 

  61. Brem S, Tyler B, Li K, Pradilla G, Legnani F, Caplan J, Brem H (2007) Local delivery of temozolomide by biodegradable polymers is superior to oral administration in a rodent glioma model. Cancer Chemother Pharmacol 60:643–650

    Article  CAS  PubMed  Google Scholar 

  62. McGirt MJ, Brem H (2010) Carmustine wafers (Gliadel) plus concomitant temozolomide therapy after resection of malignant astrocytoma: growing evidence for safety and efficacy. Ann Surg Oncol 17:1729–1731

    Article  PubMed  Google Scholar 

  63. Menei P, Metellus P, Parot-Schinkel E, Loiseau H, Capelle L, Jacquet G, Guyotat J, Neuro-oncology Club of the French Society of Neurosurgery (2010) Biodegradable carmustine wafers (Gliadel) alone or in combination with chemoradiotherapy: the French experience. Ann Surg Oncol 17:1740–1746

    Article  PubMed  Google Scholar 

  64. Recinos VR, Tyler BM, Bekelis K, Sunshine SB, Vellimana A, Li KW, Brem H (2010) Combination of intracranial temozolomide with intracranial carmustine improves survival when compared with either treatment alone in a rodent glioma model. Neurosurgery 66:530–537

    Article  PubMed  Google Scholar 

  65. Depape-Brigger D, Goldman H, Scriver CR, Delvin E, Mamer O (1977) The in vivo use of dithiothreitol in cystinosis. Pediatr Res 11:124–131

    Article  CAS  PubMed  Google Scholar 

  66. Klonne DR, Johnson DR (1985) Renal cortical mercury distribution following dithiothreitol administration. J Toxicol Environ Health 16:137–145

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the Swedish Research Council and the Karolinska Institute. We thank Dr Peter Siesjö for providing the patient-derived cells (hGCL10 - 12).

Conflict of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Sebastian Yakisich.

Additional information

Zahid M. Delwar and Dimitrios Avramidis contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Delwar, Z.M., Avramidis, D., Follin, E. et al. Cytotoxic effect of menadione and sodium orthovanadate in combination on human glioma cells. Invest New Drugs 30, 1302–1310 (2012). https://doi.org/10.1007/s10637-011-9680-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-011-9680-y

Keywords

Navigation