Skip to main content
Log in

Employing behavioral preorders to define controllability for nondeterministic discrete-event systems

  • Published:
Discrete Event Dynamic Systems Aims and scope Submit manuscript

Abstract

We employ the behavioral preorder termed partial bisimulation to define controllability for nondeterministic discrete-event systems. The preorder induces a refinements relation between the models of the controlled and the original system, that captures a notion of controllability. We define a notion of a model of a deterministic supervisory controller and we compare our approach to existing ones in the literature. We show that the equivalence relation, induced by the partial bisimulation preorder, can be employed to minimize the model of the unsupervised system. We develop an efficient minimization algorithm, by characterizing the preorders as partition-relation pairs under stability conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Baeten JCM, Basten T, Reniers MA (2010) Process algebra: equational theories of communicating processes, cambridge tracts in theoretical computer science, vol 50. Cambridge University Press

  • Baeten JCM, van Beek DA, Luttik B, Markovski J, Rooda JE (2011) A process-theoretic approach to supervisory control theory. In: Proceedings of ACC 2011. IEEE, pp 4496–4501

  • Baier C, Katoen JP (2008) Principles of model checking. MIT Press

  • Barrett G, Lafortune S (1998) Bisimulation, the supervisory control problem and strong model matching for finite state machines. Discret Event Dyn Syst 8(4):377–429

    Article  MATH  MathSciNet  Google Scholar 

  • Cassandras C, Lafortune S (2004) Introduction to discrete event systems. Kluwer Academic Publishers

  • Cieslak R, Desclaux C, Fawaz AS, Varaiya P (1988) Supervisory control of discrete-event processes with partial observations. IEEE Trans Autom Control 33(3):249–260

    Article  MATH  Google Scholar 

  • Eshuis R, Fokkinga MM (2002) Comparing refinements for failure and bisimulation semantics. Fundamenta Informaticae 52(4):297–321

    MATH  MathSciNet  Google Scholar 

  • Fabian M, Lennartson B (1996) On non-deterministic supervisory control. In: Proceedings of the 35th IEEE decision and control, vol 2, pp 2213–2218

  • Fernandez JC (1990) An implementation of an efficient algorithm for bisimulation equivalence. Sci Comput Prog 13(2–3):219–236

    Article  MATH  Google Scholar 

  • Flordal H, Malik R, Fabian M, Akesson K (2007) Compositional synthesis of maximally permissive supervisors using supervision equivalence. Discret Event Dyn Syst 17(4):475–504

    Article  MATH  MathSciNet  Google Scholar 

  • Gentilini R, Piazza C, Policriti A (2003) From bisimulation to simulation: Coarsest partition problems. J Autom Reason 31(1):73–103

    Article  MATH  MathSciNet  Google Scholar 

  • Glabbeek RJv (2001) The linear time–branching time spectrum I. Handb Process Algebra:3–99

  • Henzinger MR, Henzinger TA, Kopke PW (1996) Computing simulations on finite and infinite graphs. In: IEEE symposium on foundations of computer science. IEEE Computer Society Press, pp 453–462

  • Heymann M (1990) Concurrency and discrete event control. IEEE Control Syst Mag 10(4):103–112

    Article  Google Scholar 

  • Heymann M, Lin F (1998) Discrete-event control of nondeterministic systems. IEEE Trans Autom Control 43(1):3–17

    Article  MATH  MathSciNet  Google Scholar 

  • Kirilov A, Martinovikj D, Mishevski K, Petkovska M, Trajcheska Z, Markovski J (2013) A supervisor synthesis tool for finite nondeterministic automata with data. In: Proceedings of FMDS 2013, LNCS. Springer. To appear

  • Kumar R, Shayman MA (1996) Nonblocking supervisory control of nondeterministic systems via prioritized synchronization. IEEE Trans Autom Control 41(8):1160–1175

    Article  MATH  MathSciNet  Google Scholar 

  • Markovski J (2011) Saving time in a space-efficient simulation algorithm. In: Proceedings of QSIC/FMDS 2011. IEEE, pp. 244–251

  • Markovski J (2012) Coarsest controllability-preserving plant minimization. In: Proceedings of WODES 2012. IFAC, pp 251–258

  • Markovski J (2012) Scalable algorithm for partial bisimulation. In: Proceedings of FMDS 2012, EPTCS, vol 86. Open Publishing Association, pp 9–16

  • Markovski J, Reniers M (2012) Verifying performance of supervised plants. In: Proceedings of ACSD 2012. IEEE, pp 52–61

  • Miremadi S, Akesson K, Fabian M, Vahidi A, Lennartson B (2008) Solving two supervisory control benchmark problems using Supremica. In: Proceedings of WODES 2008. IEEE, pp 131–136

  • Mohajerani S, Malik R, Fabian M (2012) An algorithm for weak synthesis observation equivalence for compositional supervisor synthesis. In: Proceedings of WODES 2012. IFAC, pp. 239–244

  • Overkamp A (1997) Supervisory control using failure semantics and partial specifications. IEEE Trans Autom Control 42(4):498–510

    Article  MATH  MathSciNet  Google Scholar 

  • Paige R, Tarjan RE (1987) Three partition refinement algorithms. SIAM J Comput 16(6):973–989

    Article  MATH  MathSciNet  Google Scholar 

  • Park SJ, Lim JT (2000) Nonblocking supervisory control of nondeterministic systems based on multiple deterministic model approach. IEICE Trans Inf Syst E83-D (5):1177–1180

    Google Scholar 

  • Ramadge PJ, Wonham WM (1987) Supervisory control of a class of discrete event processes. SIAM J Control Optim 25(1):206–230

    Article  MATH  MathSciNet  Google Scholar 

  • Ranzato F, Tapparo F (2010) An efficient simulation algorithm based on abstract interpretation. Inf Comput 208:1–22

    Article  MATH  MathSciNet  Google Scholar 

  • Rutten JJMM (2000) Coalgebra, concurrency, and control. In: Proceedings of WODES 2000. Kluwer, pp. 31–38

  • Schmidt K, Cury J (2012) Efficient abstractions for the supervisory control of modular discrete event systems. IEEE Trans Autom Control 57(12):3224–3229

    Article  MathSciNet  Google Scholar 

  • Skoldstam M, Akesson K, Fabian M (2007) Modeling of discrete event systems using finite automata with variables. In: Proceedings of CDC 2007. IEEE, pp 3387–3392

  • Su R, van Schuppen J, Rooda J (2010) Model abstraction of nondeterministic finite-state automata in supervisor synthesis. IEEE Trans Autom Control 55(11):2527–2541

    Article  MathSciNet  Google Scholar 

  • Theunissen RJM, Schiffelers RRH, van Beek DA, Rooda JR (2009) Supervisory control synthesis for a patient support system. In: Proceedings of ECC 2009. EUCA, pp 1–6

  • Zhou C, Kumar R (2007) Control of nondeterministic discrete event systems for simulation equivalence. IEEE Trans Autom Sci Eng 4(3):340–349

    Article  Google Scholar 

  • Zhou C, Kumar R, Jiang S (2006) Control of nondeterministic discrete-event systems for bisimulation equivalence. IEEE Trans Autom Control 51(5):754–765

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank Cees J.H. Lambregts for applying the minimization procedure to several case studies. We also thank the reviewers for their detailed comments and spent time and effort, which helped to significantly improve this paper. Finally, we thank the editors for their support and patience during the review process.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jasen Markovski.

Additional information

Supported by Dutch NWO Project ProThOS, no. 600.065.120.11N124.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Markovski, J. Employing behavioral preorders to define controllability for nondeterministic discrete-event systems. Discrete Event Dyn Syst 25, 227–250 (2015). https://doi.org/10.1007/s10626-014-0201-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10626-014-0201-y

Keywords

Navigation