Skip to main content
Log in

Curcumin and capsaicin modulates LPS induced expression of COX-2, IL-6 and TGF-β in human peripheral blood mononuclear cells

  • Original Article
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

The mechanism of action of treatment of either curcumin or capsaicin or in combination on LPS (Lipopolysaccharide) induced inflammatory gene expression in peripheral blood mononuclear cells (PBMCs) was investigated using RT-PCR and in silico docking methods. RT-PCR analysis has shown that the curcumin and capsaicin significantly reduced LPS induced over expression of COX-2, IL-6 and TGF-β in PBMCs. Whereas combined molecules demonstrated synergistic response on the reduction of COX-2, IL-6 and TGF-β over expression in LPS induced PBMCs as compared to individual molecules. Further, The docking of curcumin and capsaicin at the active pockets of COX-2, IL-6 and TGF-β has shown − 3.90, − 4.49 and − 5.61 kcal/mol binding energy for curcumin and − 3.80, − 4.78 and − 5.76 kcal/mol binding energy for capsaicin, while multiple ligand simultaneous docking (MLSD) of both molecules has shown higher binding energy of − 4.24, − 5.35 and − 5.83 kcal/mol respectively. This has demonstrated the efficacy of combined curcumin and capsaicin against the LPS induced expression of pro-inflammatory cytokines in PBMCs. These results attributed the coordinated positive modulation on biochemical and molecular cellular process by combined curcumin and capsaicin as compared to individual molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aggarwal BB, Prasad S, Sung B, Gupta SC (2015) Antiinflammatory lifestyle and spices how are they linked? In: Talwar GP, Seyed EH, Sarin SK (eds) Textbook of biochemistry, biotechnology, allied and molecular medicine, 4th edn. Delhi, PHI learning pvt ltd, pp 1424–1433

    Google Scholar 

  • Akira S, Yamamoto M, Sato S, Hemmi H, Hoshino K, Kaisho T, Sanjo H, Takeuchi O, Sugiyama M, Okabe M, Takeda K (2003) Role of adaptor TRIF in the MyD88-independent Toll-like receptor signaling pathway. Science 301:640–643

    Article  PubMed  CAS  Google Scholar 

  • American type culture collection. MTT Cell Proliferation Assay Instruction Guide—ATCC, VA, USA. http://www.atcc.org

  • Barton GM, Medzhitov R (2003) Toll-like receptor signaling pathways. Science 300:1524–1525

    Article  CAS  PubMed  Google Scholar 

  • Bharath BR, Thriveni V, Manjunatha H, Bharath C (2017) Interaction of curcumin and capsaicin with LPS induced TRAF6 expression in peripheral blood mononuclear cells. Med Chem Res 26:2399–2409

    Article  CAS  Google Scholar 

  • Brain B, Moses HL (2010) Transforming growth factor beta (TGF-beta) and inflammation in cancer. Cytokine Growth Factor Rev 21:49–59

    Article  CAS  Google Scholar 

  • Castell JV, Gomez-Lechon MJ, David M, Andus T, Geiger T, Tryllengue R, Fara R, Heinrich PC (1989) Interleukin-6 is the major regulator of acute phase protein synthesis in adult human hepatocytes. FEBS Lett 242:237–239

    Article  CAS  PubMed  Google Scholar 

  • Chen CW, Lee ST, Wu WT, Fu WM, Ho FM, Lin WW (2003) Signal transduction for inhibition of inducible nitric oxide synthase and cyclooxygenase-2 induction by capsaicin and related analogs in macrophages. Br J Pharmacol 140:1077–1087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen D, Nie M, Fan MW, Bian Z (2008) Anti-inflammatory activity of curcumin in macrophages stimulated by lipopolysaccharides from Porphyromonas gingivalis. Pharmacology 82:264–269

    Article  CAS  PubMed  Google Scholar 

  • Choi JH, Jin SW, Choi CY, Kim HG, Lee GH, Kim YA, Chung YC, Jeong HG (2017) Capsaicin inhibits dimethylnitrosamine-induced hepatic fibrosis by inhibiting the TGF-β1/Smad pathway via peroxisome proliferator-activated receptor gamma activation. J Agric Food Chem 65:317–326

    Article  CAS  PubMed  Google Scholar 

  • Dubois RN, Abramson SB, Crofford L, Gupta RA, Simon LS, Van De Putte LB, Lipsky PE (1998) Cyclooxygenase in biology and disease. FASEB J 12:1063–1073

    Article  CAS  PubMed  Google Scholar 

  • Fontaine V, Savino R, Arcone R, Wit LD, Brakenhoff JPJ, Content J, Ciliberto G (1993) Involvement of the Arg179 in the active site of human IL-6. Eur J Biochem 211:749–755

    Article  CAS  PubMed  Google Scholar 

  • Gabay C (2006) Interleukin-6 and chronic inflammation. Arthritis Res Ther 8(Suppl 2):S3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gaedeke J, Noble NA, Border WA (2004) Curcumin blocks multiple sites of the TGF-beta signaling cascade in renal cells. Kidney Int 66:112–120

    Article  CAS  PubMed  Google Scholar 

  • Gasteiger J, Marsili M (1980) Iterative partial equalization of orbital electronegativity-a rapid access to atomic charges. Tetrahedron 36:3219–3288

    Article  CAS  Google Scholar 

  • Ghose AK, Crippen GM (1987) Atomic physicochemical parameters for three-dimensional-structure-directed quantitative structure–activity relationships. 2. Modeling dispersive and hydrophobic interactions. J Chem Inf Comput Sci 27:21–35

    Article  CAS  PubMed  Google Scholar 

  • Grahames CB, Michel AD, Chessell IP, Humphrey PP (1999) Pharmacological characterization of ATP- and LPS-induced IL-1beta release in human monocytes. Br J Pharmacol 127:1915–1921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Granger DL, Taintor RR, Boockvar KS, Hibbs JB Jr (1996) Measurement of nitrate and nitrite in biological samples using nitrate reductase and griess reaction. Methods Enzymol 268:142–151

    Article  CAS  PubMed  Google Scholar 

  • Guha M, Mackman N (2001) LPS induction of gene expression in human monocytes. Cell Signal 13:85–94

    Article  CAS  PubMed  Google Scholar 

  • Guimaraes MR, Leite FRM, Spolidorio LC, Kirkwood KL, Rossa C (2013) Curcumin abrogates LPS-induced proinflammatory cytokines in RAW 264.7 macrophages. Evidence for novel mechanisms involving SOCS-1, -3 and p38 MAPK. Arch oral boil 58:1309–1317

    Article  CAS  Google Scholar 

  • Gupta SC, Prasad S, Kim JH, Patchva S, Webb LJ, Indira K, Priyadarshini Aggarwal B B (2011) Multitarheting by curcumin as revealed by molecular studies. Nat Prod Rep 28:1937–1955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim CS, Kawada TB, Kim S, Han IS, Choe SY, Kurata T, Yu R (2003) Capsaicin exhibits anti-inflammatory property by inhibiting IkB-a degradation in LPS-stimulated peritoneal macrophages. Cell Signal 15:299–306

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi M, Watanabe K, Yokoyama S, Matsumoto C, Hirata M, Tominari T, Inada M, Miyaura C (2012) Capsaicin, a TRPV1 Ligand, Suppresses bone resorption by inhibiting the prostaglandin E production of osteoblasts, and attenuates the inflammatory bone loss induced by lipopolysaccharide. ISRN Pharmacol 2012:1–6

    Article  CAS  Google Scholar 

  • Korn T, Bettelli E, Oukka M, Kuchroo VK (2009) IL-17 and Th17 Cells. Annu Rev Immunol 27:485–517

    Article  CAS  PubMed  Google Scholar 

  • Le J, Vilcek J (1990) Interleukin 6: a multifunctional cytokine regulating immune reactions and the acute phase protein response. In: Rubin E, Damjanov I (eds) Pathology reviews. Humana Press, Totowa, NJ

    Google Scholar 

  • Lengauer T, Rarey M (1996) Computational methods for biomolecular docking. Curr Opin Struct Biol 6:402–406

    Article  CAS  PubMed  Google Scholar 

  • Li MO, Flavell RA (2008) TGF-beta: a master of all T cell trades. Cell 134:392–404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Li C (2010) Multiple ligand simultaneous docking: orchestrated dancing of ligands in binding sites of protein. J Comput Chem 31:2014–2022

    Article  CAS  PubMed  Google Scholar 

  • Ma F, Liu F, Ding L, You M, Yue H, Zhou Y, Hou Y (2017) Anti-inflammatory effects of curcumin are associated with down regulating microRNA-155 in LPS-treated macrophages and mice. Pharm Biol 55:1263–1273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manjunatha H, Srinivasan K (2006) Protective effect of dietary curcumin and capsaicin on induced oxidation of low-density lipoprotein, iron-induced hepatotoxicity and carrageenan-induced inflammation in experimental rats. FEBS 273:4528–4537

    Article  CAS  Google Scholar 

  • Medzhitov R, Kagan JC (2006) Phosphoinositide-mediated adaptor recruitment controls Toll-like receptor signaling. Cell 125:943–955

    Article  PubMed  CAS  Google Scholar 

  • Medzhitov R, Preston-Hurlburt P, Kopp E, Stadlen A, Chen C, Ghosh S, Janeway CA Jr (1998) MyD88 is an adaptor protein in the hToll/IL-1 receptor family signaling pathways. Mol Cell 2:253–258

    Article  CAS  PubMed  Google Scholar 

  • Mehta VB, Hart J, Wewers MD (2001) ATP-stimulated release of interleukin (IL)-1beta and IL-18 requires priming by lipopolysaccharide and is independent of caspase-1 cleavage. J Biol Chem 276:3820–3826

    Article  CAS  PubMed  Google Scholar 

  • Mello VDF, Kolehmanien M, Schwab U, Pulkkinen L, Uusitupa M (2012) Gene expression of peripheral blood mononuclear cells as a tool in dietary intervention studies: what do we know so far? Mol Nutr 56:1160–1172

    Article  CAS  Google Scholar 

  • Meng Z, Yan C, Deng Q, Gao DF, Niu XL (2013) Curcumin inhibits LPS-induced inflammation in rat vascular smooth muscle cells in vitro via ROS-relative TLR4-MAPK/NF-kappa B pathways. Acta Pharmacol Sin 34:901–911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Netea MG, Nold-Petry CA, Nold MF, Joosten LA, Opitz B, van der Meer JH, van de Veerdonk FL, Ferwerda G, Heinhuis B, Devesa I, Funk CJ, Mason RJ, Kullberg BJ, Rubartelli A, Van der Meer JW, Dinarello CA (2009) Differential requirement for the activation of the inflammasome for processing and release of IL-1beta in monocytes and macrophages. Blood 113:2324–2335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nienhaus G (2005) Protein ligand interactions: methods and applications-methods in molecular biology. Humana press, New Jersey

    Book  Google Scholar 

  • Noorafshan A, Esfahani SA (2013) A review of therapeutic effects of curcumin. Curr Pharm Des 19:2032–2046

    CAS  PubMed  Google Scholar 

  • Pacher P, Beckman JS, Liaudet L (2007) Nitric oxide and peroxynitrite in health and disease. Physiol Rev 87:315–424

    Article  CAS  PubMed  Google Scholar 

  • Padhye S, Banerjee S, Chavan D, Pandye S, Swamy KV, Ali S, Li J, Dou QP, Sarkar Fazlul H (2009) Fluorocurcumins as Cyclooxygenase-2 Inhibitor: molecular docking, pharmacokinetics and tissue distribution in mice. Pharm Res 26:2438–2445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parihar A, Eubank TD, Doseff AI (2010) Monocytes and macrophages regulate immunity through dynamic networks of survival and cell death. J Innate Immun 2:204–215

    Article  PubMed  PubMed Central  Google Scholar 

  • Park JY, Kawada T, Han IS, Kim BS, Goto Takahashi N, Fushiki T, Kurata T, Yu R (2004) Capsaicin inhibits the production of tumor necrosis factor α by LPS-stimulated murine macrophages, RAW 264.7: a PPARγ ligand-like action as a novel mechanism. FEBS Lett 572:266–270

    Article  CAS  PubMed  Google Scholar 

  • Radaev S, Zou Z, Huang T, Lafer EM, Hinck AP, Sun PD (2010) Ternary complex of transforming growth factor-β1 reveals isoform-specific ligand recognition and receptor recruitment in the superfamily. J Biol Chem 285:14806–14814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rahardjo B, Widjajanto E, Sujuti H, Keman K (2014) Curcumin decreased level of proinflammatory cytokines in monocytes cultures exposed to preeclamptic plasma by affecting the transcription factors NF-κB and PPAR-γ. Biomark Genom Med 6:105–115

    Article  CAS  Google Scholar 

  • Serbina NV, Jia T, Hohl TM, Pamer EG (2008) Monocytes-mediated defense against microbial pathogens. Annu Rev Immunol 26:421–452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shin YH, Namkoong E, Choi S, Bae JS, Jin M, Hwang SM, Arote R, Choi SY, Park K (2013) Capsaicin regulates the NF-κB pathway in salivary gland inflammation. J Dent Res 92:547–552

    Article  CAS  PubMed  Google Scholar 

  • Shrihari TG (2017) Dual rle of inflammatory mediators in cancer. Ecancermedicalscience 11:721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Snick JV (1990) Interleukin-6: an overview. Annu Rev Immunol 8:253–278

    Article  PubMed  Google Scholar 

  • Sweet MJ, Hume DA (1996) Endotoxin signal transduction in macrophages. J Leukocyte Biol 60:8–26

    Article  CAS  PubMed  Google Scholar 

  • Tang Y (2015) Curcumin targets multiple pathways to halt hepatic stellate cell activation: updated mechanisms in vitro and in vivo. Digest Dis Sci 60:1554–1564

    Article  CAS  PubMed  Google Scholar 

  • Terao J (2009) Dietary flavonoids as antioxidants. Forum Nutr 61:87–94

    Article  CAS  PubMed  Google Scholar 

  • Thriveni V, Manjunatha H, Prabhakar BT (2018) Protective effect of dietary curcumin and capsaicin on LPS-induced inflammation in mice. Pharmacognosy J 10:725–729

    Article  CAS  Google Scholar 

  • Triantafilou K, Triantafilou M (2002) Lipopolysaccharide recognition: CD14, TLRs and the LPS-activation cluster. Trends Immunol 23:301–304

    Article  CAS  PubMed  Google Scholar 

  • Van Snick J (1990) Interleukin-6: an overview. Annu Rev Immunol 8:253–278

    Article  PubMed  Google Scholar 

  • Warren S (1997) Current protocols in immunology. Wiley, New York

    Google Scholar 

  • Yao QH, Wang DQ, Cui CC, Yuan ZY, Chen SB, Yao XW et al (2004) Curcumin ameliorates left ventricular function in rabbits with pressure overload: inhibition of the remodeling of the left ventricular collagen network associated with suppression of myocardial tumor necrosis factor-alpha and matrix metalloproteinase-2 expression. Biol Pharm Bull 27:198–202

    Article  CAS  PubMed  Google Scholar 

  • Yoshiaki A, Shu H, Takashi H (1999) Curcumin inhibition of inflammatory cytokine production by Human peripheral blood monocytes and Alveolar macrophages. Pharma Res 39:41–47

    Article  Google Scholar 

  • Zhao F, Gong Y, Hu Yuan LuM, Wang J, Dong J, Chen D, Chen L, Fu F, Qiu F (2014) Curcumin and its major metabolites inhibit the inflammatory response induced by lipopolysaccharide: translocation of nuclear factor-kB as potential target. Mol Med Rep 11:3087–3093

    Article  PubMed  CAS  Google Scholar 

  • Zhou H, Beevers CS, Huang S (2011) The targets of curcumin. Curr Drug Targets 12:332–347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

HM and TV acknowledge the financial assistance (SB/EMEQ-343/2013) provided by Department of Science and Technology-Science and Engineering Research Board (DST-SERB) Govt. of India, New Delhi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manjunatha Hanumanthappa.

Ethics declarations

Conflict of interests

Authors declare that they have no conflict of interests.

Ethical approval

This article does not contain any studies with human participants or animal performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasanthkumar, T., Hanumanthappa, M. & Lakshminarayana, R. Curcumin and capsaicin modulates LPS induced expression of COX-2, IL-6 and TGF-β in human peripheral blood mononuclear cells. Cytotechnology 71, 963–976 (2019). https://doi.org/10.1007/s10616-019-00338-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-019-00338-x

Keywords

Navigation