Skip to main content
Log in

The mimetic finite difference method on polygonal meshes for diffusion-type problems

  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

New mimetic discretizations of diffusion-type equations (for instance, equations modeling single phase Darcy flow in porous media) on unstructured polygonal meshes are derived. The first order convergence rate for the fluid velocity and the second-order convergence rate for the pressure on polygonal, locally refined and non-matching meshes are demonstrated with numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Arbogast, L. Cowsar, M. Wheeler and I. Yotov, Mixed finite element methods on non-matching multiblock grids, SIAM J. Numer. Anal. 37 (2000) 1295–1315.

    Article  Google Scholar 

  2. M. Berndt, K. Lipnikov, D. Moulton and M. Shashkov, Convergence of mimetic finite difference discretizations of the diffusion equation, J. Numer. Math. 9 (2001) 265–284.

    Google Scholar 

  3. M. Berndt, K. Lipnikov, M. Shashkov, M. Wheeler and I. Yotov, Superconvergence of the velocity in mimetic finite difference methods on quadrilaterals, Los Alamos Report LA-UR-03-7904 (submitted to SIAM J. Numer. Anal.).

  4. J. Campbell and M. Shashkov, A tensor artificial viscosity using a mimetic finite difference algorithm, J. Comput. Phys. 172 (2001) 739–765.

    Article  CAS  Google Scholar 

  5. R.E. Ewing, R.D. Lazarov and P.S. Vassilevski, Local refinement techniques for elliptic problems on cell-centered grids I, error analysis, Math. Comp. 56 (1991) 437–461.

    Google Scholar 

  6. R.E. Ewing, M. Liu and J. Wang, Superconvergence of mixed finite element approximations over quadrilaterals, SIAM J. Numer. Anal. 36(3) (1999) 772–787.

    Article  Google Scholar 

  7. J. Hyman, J. Morel, M. Shashkov and S. Steinberg, Mimetic finite difference methods for diffusion equations, Comput. Geosci. 6(3/4) (2002) 333–352.

    Article  Google Scholar 

  8. J. Hyman and M. Shashkov, Mimetic discretizations for Maxwell’s equations and the equations of magnetic diffusion, Progress Electromagnetic Res. 32 (2001) 89–121.

    Google Scholar 

  9. J. Hyman, M. Shashkov and S. Steinberg, The numerical solution of diffusion problems in strongly heterogeneous non-isotropic materials, J. Comput. Phys. 132 (1997) 130–148.

    Article  CAS  Google Scholar 

  10. J. Hyman, M. Shashkov and S. Steinberg, The effect of inner products for discrete vector fields on the accuracy of mimetic finite difference methods, Internat. J. Comput. Math. Appl. 42 (2001) 1527–1547.

    Article  Google Scholar 

  11. Y. Kuznetsov, Two-level preconditioners with projectors for unstructured grids, Russian J. Numer. Anal. Math. Modelling 15(3/4) (2000) 247–256.

    Google Scholar 

  12. Y. Kuznetsov and S. Repin, New mixed finite element method on polygonal and polyhedral meshes, Russian J. Numer. Anal. Math. Modelling 18(3) (2003) 261–278.

    Article  Google Scholar 

  13. K. Lipnikov, J. Morel and M. Shashkov, Mimetic finite difference methods for diffusion equations on non-orthogonal non-conformal meshes, J. Comput. Phys. 199 (2004) 589–597.

    Article  Google Scholar 

  14. R. Liska, M. Shashkov and V. Ganzha, Analysis and optimization of inner products for mimetic finite difference method on triangular grid, Math. Comput. Simulation 67 (2004) 55–66.

    Article  Google Scholar 

  15. L. Margolin, M. Shashkov and P. Smolarkiewicz, A discrete operator calculus for finite difference approximations, Comput. Methods Appl. Mech. Engrg. 187 (2000) 365–383.

    Article  Google Scholar 

  16. J. Morel, R. Roberts and M. Shashkov, A local support-operators diffusion discretization scheme for quadrilateral rz meshes, J. Comput. Phys. 144 (1998) 17–51.

    Article  Google Scholar 

  17. R. Naff, T. Russell and J. Wilson, Shape functions for velocity interpolation in general hexahedral cells, Comput. Geosci. 6(3/4) (2002) 285–314.

    Article  Google Scholar 

  18. A. Okabe, B. Boots, K. Sugihara and S.N. Chiu, Concepts and Applications of Voronoi Diagrams (Wiley, New York, 2000).

    Google Scholar 

  19. T.S. Palmer, Discretizing the diffusion equation on unstructured polygonal meshes in two dimensions, Ann. Nuclear Energy 28 (2001) 1851–1880.

    Article  CAS  Google Scholar 

  20. M. Shashkov, Conservative Finite-Difference Methods on General Grids (CRC Press, Boca Raton, FL, 1996).

    Google Scholar 

  21. M. Shashkov and S. Steinberg, Solving diffusion equations with rough coefficients in rough grids, J. Comput. Phys. 129 (1996) 383–405.

    Article  Google Scholar 

  22. K. Stüben, Algebraic multigrid (AMG): Experiences and comparisons, Appl. Math. Comput. 13 (1983) 419–452.

    Article  Google Scholar 

  23. P. Vanêk, M. Brezina and J. Mandel, Convergence of algebraic multigrid based on smoothed aggregation, Numer. Math. 88 (2001) 559–579.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Lipnikov.

Additional information

The work was partly performed at Los Alamos National Laboratory operated by the University of California for the US Department of Energy under contract W-7405-ENG-36. The U.S. Government’s right to retain a non-exclusive, royalty free license in and to any copyright is acknowledged. The research of the first author was supported by a grant from the Los Alamos Computer Science Institute (LACSI).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuznetsov, Y., Lipnikov, K. & Shashkov, M. The mimetic finite difference method on polygonal meshes for diffusion-type problems. Comput Geosci 8, 301–324 (2004). https://doi.org/10.1007/s10596-004-3771-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-004-3771-1

Keywords