Skip to main content
Log in

A convergence analysis of the method of codifferential descent

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

This paper is devoted to a detailed convergence analysis of the method of codifferential descent (MCD) developed by professor V.F. Demyanov for solving a large class of nonsmooth nonconvex optimization problems. We propose a generalization of the MCD that is more suitable for applications than the original method, and that utilizes only a part of a codifferential on every iteration, which allows one to reduce the overall complexity of the method. With the use of some general results on uniformly codifferentiable functions obtained in this paper, we prove the global convergence of the generalized MCD in the infinite dimensional case. Also, we propose and analyse a quadratic regularization of the MCD, which is the first general method for minimizing a codifferentiable function over a convex set. Apart from convergence analysis, we also discuss the robustness of the MCD with respect to computational errors, possible step size rules, and a choice of parameters of the algorithm. In the end of the paper we estimate the rate of convergence of the MCD for a class of nonsmooth nonconvex functions that arise, in particular, in cluster analysis. We prove that under some general assumptions the method converges with linear rate, and it convergence quadratically, provided a certain first order sufficient optimality condition holds true.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Demyanov, V.F.: Continuous generalized gradients for nonsmooth functions. In: Kurzhanski, A., Neumann, K., Pallaschke, D. (eds.) Optimization, Parallel Processing and Applications, pp. 24–27. Springer, Berlin (1988)

    Chapter  Google Scholar 

  2. Demyanov, V.F.: On codifferentiable functions. Vestn. Leningr. Univ. Math. 2, 22–26 (1988)

    MathSciNet  MATH  Google Scholar 

  3. Demyanov, V.F.: Smoothness of nonsmooth functions. In: Clarke, F.H., Demyanov, V.F., Giannesssi, F. (eds.) Nonsmooth Optimization and Related Topics, pp. 79–88. Springer, Boston (1989)

    Chapter  Google Scholar 

  4. Demyanov, V.F., Rubinov, A.M.: Constructive Nonsmooth Analysis. Peter Lang, Frankfurt am Main (1995)

    MATH  Google Scholar 

  5. Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation I. Basic Theory. Springer, Berlin (2006)

    Google Scholar 

  6. Penot, J.-P.: Calculus Without Derivatives. Springer, New York (2013)

    Book  Google Scholar 

  7. Zaffaroni, A.: Continuous approximations, codifferentiable functions and minimization methods. In: Demyanov, V.F., Rubinov, A.M. (eds.) Quasidifferentiability and Related Topics, pp. 361–391. Kluwer Academic Publishers, Dordrecht (2000)

    Chapter  Google Scholar 

  8. Dolgopolik, M.V.: Codifferential calculus in normed spaces. J. Math. Sci. 173, 441–462 (2011)

    Article  MathSciNet  Google Scholar 

  9. Dolgopolik, M.V.: Abstract convex approximations of nonsmooth functions. Optimization 64, 1439–1469 (2015)

    Article  MathSciNet  Google Scholar 

  10. Demyanov, V.F., Stavroulakis, G.E., Polyakova, L.N., Panagiotopoulos, P.D.: Quasidifferentiability and Nonsmooth Modelling in Mechnics, Engineering and Economics. Kluwer Academic Publishers, Dordrecht (1996)

    Book  Google Scholar 

  11. Demyanov, V.F., Rubinov, A.M. (eds.): Quasidifferentiability and Related Topics. Kluwer Academic Publishers, Dordrecht (2000)

    MATH  Google Scholar 

  12. Pallaschke, D., Recht, P., Urbański, R.: On locally-Lipschitz quasi-differentiable functions in Banach spaces. Optimization 17, 287–295 (1986)

    Article  MathSciNet  Google Scholar 

  13. Uderzo, A.: Fréchet quasidifferential calculus with applications to metric regularity of continuous maps. Optimization 54, 469–493 (2005)

    Article  MathSciNet  Google Scholar 

  14. Bagriov, A.M.: Numerical methods for minimizing quasidifferentiable functions: a survey and comparison. In: Demyanov, V.F., Rubinov, A.M. (eds.) Quasidifferentiability and Related Topics, pp. 33–71. Kluwer Academic Publishers, Dordrecht (2000)

    Chapter  Google Scholar 

  15. Bagirov, A.: A method for minimization of quasidifferentiable functions. Optim. Methods Softw. 17, 31–60 (2002)

    Article  MathSciNet  Google Scholar 

  16. Luderer, B., Weigelt, J.: A solution method for a special class of nondifferentiable unconstrained optimization problems. Comput. Optim. Appl. 24, 83–93 (2003)

    Article  MathSciNet  Google Scholar 

  17. Mäkelä, M.: Survey of bundle method for nonsmooth optimization. Optim. Methods Softw. 17, 1–29 (2002)

    Article  MathSciNet  Google Scholar 

  18. Haarala, N., Miettinen, K., Mäkelä, M.: Globally convergent limited memory bundle method for large-scale nonsmooth optimization. Math. Program. 109, 181–205 (2007)

    Article  MathSciNet  Google Scholar 

  19. Hare, W., Sagastizábal, C.: A redistributed proximal bundle method for nonconvex optimization. SIAM J. Optim. 20, 2442–2473 (2010)

    Article  MathSciNet  Google Scholar 

  20. Fuduli, A., Gaudioso, M., Nurminski, E.A.: A splitting bundle approach for non-smooth non-convex minimization. Optimization 64, 1131–1151 (2015)

    Article  MathSciNet  Google Scholar 

  21. Burke, J.V., Lewis, A.S., Overton, M.L.: A robust gradient sampling algorithm for nonsmooth, nonconvex optimization. SIAM J. Optim. 15, 751–779 (2005)

    Article  MathSciNet  Google Scholar 

  22. Kiwiel, K.C.: A nonderivative version of the gradient sampling algorithm for nonsmooth nonconvex optimization. SIAM J. Optim. 20, 1983–1994 (2010)

    Article  MathSciNet  Google Scholar 

  23. Hare, W., Nutini, J.: A derivative-free approximate gradient sampling algorithm for finite minimax problems. Comput. Optim. Appl. 56, 1–38 (2013)

    Article  MathSciNet  Google Scholar 

  24. Curtis, F.E., Que, X.: An adaptive gradient sampling algorithm for non-smooth optimization. Optim. Methods Softw. 28, 1302–1324 (2013)

    Article  MathSciNet  Google Scholar 

  25. Lewis, A.S., Overton, M.L.: Nonsmooth optimization via quasi-Newton methods. Math. Program. 141, 135–163 (2013)

    Article  MathSciNet  Google Scholar 

  26. Keskar, N., Wächter, A.: A limited-memory quasi-Newton algorithm for bound-constrained non-smooth optimization. Optim. Methods Softw. (2017). https://doi.org/10.1080/10556788.2017.1378652

    Article  Google Scholar 

  27. Bagirov, A.M., Karasözen, B., Sezer, M.: Discrete gradient method: derivative-free method for nonsmooth optimization. J. Optim. Theory Appl. 137, 317–334 (2008)

    Article  MathSciNet  Google Scholar 

  28. Bagirov, A.M., Rubinov, A.M., Zhang, J.: A multidimensional descent method for global optimization. Optimization 58, 611–625 (2009)

    Article  MathSciNet  Google Scholar 

  29. Conn, A.R., Scheinberg, K., Vicente, L.N.: Introduction to Derivative-Free Optimization. SIAM, Philadelphia (2009)

    Book  Google Scholar 

  30. Karmitsa, N., Bagirov, A., Mäkelä, M.M.: Comparing different nonsmooth minimization methods and software. Optim. Methods Softw. 27, 131–153 (2012)

    Article  MathSciNet  Google Scholar 

  31. Bagirov, A., Napsu, K., Mäkelä, M.M.: Introduction to Nonsmooth Optimization. Springer, Cham (2014)

    Book  Google Scholar 

  32. Demyanov, V.F., Bagirov, A.M., Rubinov, A.M.: A method of truncated codifferential with applications to some problems of cluster analysis. J. Glob. Optim. 23, 63–80 (2002)

    Article  MathSciNet  Google Scholar 

  33. Bagirov, A.M., Ganjehlou, A.N., Ugon, J., Tor, A.H.: Truncated codifferential method for nonsmooth convex optimization. Pac. J. Optim. 6, 483–496 (2010)

    MathSciNet  MATH  Google Scholar 

  34. Tor, A.H., Karasözen, B., Bagirov, A.: Truncated codifferential method for linearly constrained nonsmooth optimization. In: The ISI proceedings of 24th mini EURO conference “Continuous Optimization and Information-Based Technologies in the Financial Sector”, Izmir, Turkey, pp 87–93 (2010)

  35. Bagirov, A.M., Ugon, J.: Codifferential method for minimizing nonsmooth DC functions. J. Glob. Optim. 50, 3–22 (2011)

    Article  MathSciNet  Google Scholar 

  36. Tor, A.H., Bagirov, A., Karasözen, B.: Aggregate codifferential method for nonsmooth DC optimization. J. Comput. Appl. Math. 259, 851–867 (2014)

    Article  MathSciNet  Google Scholar 

  37. Andramonov, M.Yu.: The method of confidence neighbourhoods for minimization of codifferentiable functions. Russ. Math. 48, 1–7 (2004)

  38. Demyanov, V.F., Tamasyan, GSh: Exact penalty functions in isoperimetric problems. Optimization 60, 153–177 (2011)

    Article  MathSciNet  Google Scholar 

  39. Demyanov, V.F., Tamasyan, GSh: Direct methods in the parametric moving boundary variational problem. Numer. Funct. Anal. Optim. 35, 932–961 (2014)

    Article  MathSciNet  Google Scholar 

  40. Fominyh, A.V., Karelin, V.V., Polyakova, L.N.: Application of the hypodifferential descent method to the problem of constructing an optimal control. Optim. Lett. (2017). https://doi.org/10.1007/s11590-017-1222-x

    Article  MATH  Google Scholar 

  41. Pschenichny, B.N., Danilin, Yu.M.: Numerical Methods in Extremal Problems, English edn. Mir Publishers, Moscow (1978)

  42. Pironneau, O., Polak, E.: On the rate of convergence of certain methods of centers. Math. Program. 2, 230–258 (1972)

    Article  MathSciNet  Google Scholar 

  43. Daugavet, V.A., Malozemov, V.N.: Quadratic rate of convergence of a linearization method for solving discrete minimax problems. USSR Comput. Math. Math. Phys. 21, 19–28 (1981)

    Article  Google Scholar 

  44. Polak, E.: Optimization, Algorithms and Consistent Approximations. Springer, New York (1997)

    MATH  Google Scholar 

  45. Ioffe, A.D., Tihomirov, V.M.: Theory of Extremal Problems. North-Holland Publishing Company, Amsterdam (1979)

    MATH  Google Scholar 

  46. Luderer, B.: Does the special choice of quasidifferentials influence necessary minimum conditions? In: Oettli, W., Pallaschke, D. (eds.) Advances in Optimization, pp. 256–266. Springer, Berlin (1992)

    Chapter  Google Scholar 

  47. Luderer, B., Rösiger, R., Würker, U.: On necessary minimum conditions in quasidifferential calculus: independence of the specific choice of quasidifferentials. Optimization 22, 643–660 (1991)

    Article  MathSciNet  Google Scholar 

  48. Kuntz, L.: A charaterization of continuously codifferentiable function and some consequences. Optimization 22, 539–547 (1991)

    Article  MathSciNet  Google Scholar 

  49. Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley-Interscience, New York (1983)

    MATH  Google Scholar 

  50. Pallaschke, D., Urbański, R.: Pairs of Compact Convex Sets: Fractional Arithmetic with Convex Sets. Kluwer Academic Publishers, Dordrecht (2002)

    Book  Google Scholar 

  51. Di Pillo, G., Facchinei, F.: Exact Barrier Function Methods for Lipschitz Programs. Appl. Math. Optim. 32, 1–31 (1995)

    Article  MathSciNet  Google Scholar 

  52. Demyanov, V.F., Malozemov, V.N.: Introduction to Minimax. Wiley, New York (1990)

    Google Scholar 

  53. Hiriart-Urruty, J.-B., Lemaréchal, C.: Convex Analysis and Minimization Algorithms I. Springer, Berlin (1993)

    Book  Google Scholar 

  54. Edwards, R.E.: Functional Analysis: Theory and Applications. Dover Publications, New York (1995)

    Google Scholar 

  55. Penot, J.-P.: On the convergence of descent algorithms. Comput. Optim. Appl. 23, 279–284 (2002)

    Article  MathSciNet  Google Scholar 

  56. Dolgopolik, M.V.: Nonsmooth problems of calculus of variations via codifferentiation. ESAIM: Control Optim. Calc. Var. 20, 1153–1180 (2014)

    Article  MathSciNet  Google Scholar 

  57. Dolgopolik, M.V.: Inhomogeneous convex approximations of nonsmooth functions. Russ. Math. 56, 28–42 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author is sincerely grateful to his colleagues G.Sh. Tamasyan, A. Fominyh and T. Angelov for numerous useful discussions on the method of codifferential descent and its applications that played an important role in the preparation of this paper. Also, the author wishes to express his thanks to the anonymous referees for many thoughtful comments that helped to significantly improve the quality of the article, and to professor V.N. Malozemov for pointing out the fact that the PPP algorithm converges quadratically to a Chebyshev (Haar) point.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Dolgopolik.

Additional information

The author was supported by the Russian Foundation for Basic Research under Grant No. 16-31-00056.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dolgopolik, M.V. A convergence analysis of the method of codifferential descent. Comput Optim Appl 71, 879–913 (2018). https://doi.org/10.1007/s10589-018-0024-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-018-0024-0

Keywords

Mathematics Subject Classification

Navigation