Skip to main content

Advertisement

Log in

Collective metastasis: coordinating the multicellular voyage

  • Review
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

The metastatic process is arduous. Cancer cells must escape the confines of the primary tumor, make their way into and travel through the circulation, then survive and proliferate in unfavorable microenvironments. A key question is how cancer cells overcome these multiple barriers to orchestrate distant organ colonization. Accumulating evidence in human patients and animal models supports the hypothesis that clusters of tumor cells can complete the entire metastatic journey in a process referred to as collective metastasis. Here we highlight recent studies unraveling how multicellular coordination, via both physical and biochemical coupling of cells, induces cooperative properties advantageous for the completion of metastasis. We discuss conceptual challenges and unique mechanisms arising from collective dissemination that are distinct from single cell-based metastasis. Finally, we consider how the dissection of molecular transitions regulating collective metastasis could offer potential insight into cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Pan H, Gray R, Braybrooke J, Davies C, Taylor C, McGale P, Peto R, Pritchard KI, Bergh J, Dowsett M, Hayes DF (2017) 20-year risks of breast-cancer recurrence after stopping endocrine therapy at 5 years. N Engl J Med 377:1836–1846

    Article  PubMed  PubMed Central  Google Scholar 

  2. Erdi YE (2012) Limits of tumor detectability in nuclear medicine and PET. Mol Imaging Radionucl Ther 21:23–28

    Article  PubMed  PubMed Central  Google Scholar 

  3. Hu M, Yao J, Carroll KD, Weremowicz S, Chen H, Carrasco D, Richardson A, Violette S, Nikolskaya T, Nikolsky Y et al (2008) Regulation of in situ to invasive breast carcinoma transition. Cancer Cell 13:394–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yu K-D, Wu L-M, Liu G-Y, Wu J, Di G-H, Shen Z-Z, Shao Z-M et al (2011) Different distribution of breast cancer subtypes in breast ductal carcinoma in situ (DCIS), DCIS with microinvasion, and DCIS with invasion component. Ann Surg Oncol 18:1342–1348

    Article  PubMed  Google Scholar 

  5. Friedl P, Alexander S (2011) Cancer invasion and the microenvironment: plasticity and reciprocity. Cell 147:992–1009

    Article  CAS  PubMed  Google Scholar 

  6. Friedl P, Noble PB, Walton PA, Laird DW, Chauvin PJ, Tabah RJ, Black M, Zänker KS (1995) Migration of coordinated cell clusters in mesenchymal and epithelial cancer explants in vitro. Can Res 55:4557–4560

    CAS  Google Scholar 

  7. Lambert AW, Pattabiraman DR, Weinberg RA (2017) Emerging biological principles of metastasis. Cell 168:670–691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Liotta LA, Kohn EC (2001) The microenvironment of the tumour–host interface. Nature 411:375–379

    Article  CAS  PubMed  Google Scholar 

  9. Leighton J, Kalla RL, Turner JM Jr, Fennell RH Jr (1960) Pathogenesis of tumor invasion. II. Aggregate replication. Cancer Res 20:575–586

    CAS  PubMed  Google Scholar 

  10. Bronsert P, Enderle-Ammour K, Bader M, Timme S, Kuehs M, Csanadi A, Kayser G, Kohler I, Bausch D, Hoeppner J et al (2014) Cancer cell invasion and EMT marker expression: a three-dimensional study of the human cancer-host interface. J Pathol 234:410–422

    Article  CAS  PubMed  Google Scholar 

  11. Enderle-Ammour K, Bader M, Ahrens TD, Franke K, Timme S, Csanadi A, Hoeppner J, Kulemann B, Maurer J, Reiss P et al (2017) Form follows function: Morphological and immunohistological insights into epithelial-mesenchymal transition characteristics of tumor buds. Tumour Biol 39:1010428317705501

    Article  PubMed  CAS  Google Scholar 

  12. Jensen DH, Reibel J, Mackenzie IC, Dabelsteen E (2015) Single cell migration in oral squamous cell carcinoma: possible evidence of epithelial-mesenchymal transition in vivo. J Oral Pathol Med 44:674–679

    Article  CAS  PubMed  Google Scholar 

  13. Kudo T, Shimazu Y, Yagishita H, Izumo T, Soeno Y, Sato K, Taya Y, Aoba T (2013) Three-dimensional reconstruction of oral tongue squamous cell carcinoma at invasion front. Int J Dent 2013:482765

    Article  PubMed  PubMed Central  Google Scholar 

  14. Tian J, Qian B, Zhang S, Guo R, Zhang H, Jeannon JP, Jin R, Feng X, Zhan Y, Liu J et al (2020) Three-dimensional reconstruction of laryngeal cancer with whole organ serial immunohistochemical sections. Sci Rep 10:18962

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Yoshizawa T, Hong S-M, Jung D, Noë M, Kiemen A, Wu P-H, Wirtz D, Hruban RH, Wood LD, Oshima K (2020) Three-dimensional analysis of extrahepatic cholangiocarcinoma and tumor budding. J Pathol 251:e5474

    Article  CAS  Google Scholar 

  16. Khalil AA, Ilina O, Gritsenko PG, Bult P, Span PN, Friedl P (2017) Collective invasion in ductal and lobular breast cancer associates with distant metastasis. Clin Exp Metas 34:421–429

    Article  Google Scholar 

  17. Mohammed RAA, Martin SG, Mahmmod AM, Macmillan RD, Green AR, Paish EC, Ellis IO (2011) Objective assessment of lymphatic and blood vascular invasion in lymph node-negative breast carcinoma: findings from a large case series with long-term follow-up. J Pathol 223:358–365

    Article  PubMed  Google Scholar 

  18. Takahashi H, Katsuta E, Yan L, Tokumaru Y, Katz MHG, Takabe K (2020) Transcriptomic profile of lymphovascular invasion, a known risk factor of pancreatic ductal adenocarcinoma metastasis. Cancers (Basel) 12:2033

    Article  CAS  Google Scholar 

  19. Cheng L, Montironi R, Davidson DD, Lopez-Beltran A (2009) Staging and reporting of urothelial carcinoma of the urinary bladder. Mod Pathol 22:S70–S95

    Article  PubMed  Google Scholar 

  20. Lim SB, Yu CS, Jang SJ, Kim TW, Kim JH, Kim JC (2010) Prognostic significance of lymphovascular invasion in sporadic colorectal cancer. Dis Colon Rectum 53:377–384

    Article  PubMed  Google Scholar 

  21. Hamy AS, Lam GT, Laas E, Darrigues L, Balezeau T, Guerin J, Livartowski A, Sadacca B, Pierga JY, Vincent-Salomon A et al (2018) Lymphovascular invasion after neoadjuvant chemotherapy is strongly associated with poor prognosis in breast carcinoma. Breast Cancer Res Treat 169:295–304

    Article  PubMed  Google Scholar 

  22. Schoppmann SF, Bayer G, Aumayr K, Taucher S, Geleff S, Rudas M, Kubista E, Hausmaninger H, Samonigg H, Gnant M et al (2004) Prognostic value of lymphangiogenesis and lymphovascular invasion in invasive breast cancer. Ann Surg 240:306–312

    Article  PubMed  PubMed Central  Google Scholar 

  23. Jolly MK, Boareto M, Debeb BG, Aceto N, Farach-Carson MC, Woodward WA, Levine H (2017) Inflammatory breast cancer: a model for investigating cluster-based dissemination. NPJ Breast Cancer 3:21

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Robertson FM, Bondy M, Yang W, Yamauchi H, Wiggins S, Kamrudin S, Krishnamurthy S, Le-Petross H, Bidaut L, Player AN et al (2010) Inflammatory breast cancer: the disease, the biology, the treatment. Cancer J Clin 60:351–375

    Article  Google Scholar 

  25. Weigelt B, Geyer FC, Reis-Filho JS (2010) Histological types of breast cancer: how special are they? Mol Oncol 4:192–208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bruner HC, Derksen PWB (2018) Loss of E-cadherin-dependent cell-cell adhesion and the development and progression of cancer. Cold Spring Harb Perspect Biol 10:a029330

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Ciriello G, Gatza ML, Beck AH, Wilkerson MD, Rhie SK, Pastore A, Zhang H, McLellan M, Yau C, Kandoth C et al (2015) Comprehensive molecular portraits of invasive lobular breast cancer. Cell 163:506–519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hennessy BT, Gonzalez-Angulo A-M, Stemke-Hale K, Gilcrease MZ, Krishnamurthy S, Lee J-S, Fridlyand J, Sahin A, Agarwal R, Joy C et al (2009) Characterization of a naturally occurring breast cancer subset enriched in epithelial-to-mesenchymal transition and stem cell characteristics. Can Res 69:4116–4124

    Article  CAS  Google Scholar 

  29. McCart Reed AE, Kalaw E, Nones K, Bettington M, Lim M, Bennett J, Johnstone K, Kutasovic JR, Saunus JM, Kazakoff S et al (2019) Phenotypic and molecular dissection of metaplastic breast cancer and the prognostic implications. J Pathol 247:214–227

    Article  CAS  PubMed  Google Scholar 

  30. Taube JH, Herschkowitz JI, Komurov K, Zhou AY, Gupta S, Yang J, Hartwell K, Onder TT, Gupta PB, Evans KW et al (2010) Core epithelial-to-mesenchymal transition interactome gene-expression signature is associated with claudin-low and metaplastic breast cancer subtypes. Proc Natl Acad Sci 107:15449–15454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ashworth T (1869) A case of cancer in which cells similar to those in the tumours were seen in the blood after death. Aust Med J 14:146–149

    Google Scholar 

  32. Aceto N, Toner M, Maheswaran S, Haber DA (2015) En route to metastasis: circulating tumor cell clusters and epithelial-to-mesenchymal transition. Trends Cancer 1:44–52

    Article  PubMed  Google Scholar 

  33. Au SH, Edd J, Haber DA, Maheswaran S, Stott SL, Toner M (2017) Clusters of circulating tumor cells: a biophysical and technological perspective. Curr Opin Biomed Eng 3:13–19

    Article  PubMed  PubMed Central  Google Scholar 

  34. Ferreira MM, Ramani VC, Jeffrey SS (2016) Circulating tumor cell technologies. Mol Oncol 10:374–394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Giuliano M, Shaikh A, Lo HC, Arpino G, De Placido S, Zhang XH, Cristofanilli M, Schiff R, Trivedi MV (2018) Perspective on circulating tumor cell clusters: why it takes a village to metastasize. Cancer Res 78:845–852

    Article  CAS  PubMed  Google Scholar 

  36. Pantel K, Alix-Panabières C (2019) Liquid biopsy and minimal residual disease—latest advances and implications for cure. Nat Rev Clin Oncol 16:409–424

    Article  CAS  PubMed  Google Scholar 

  37. Aceto N, Bardia A, Miyamoto DT, Donaldson MC, Wittner BS, Spencer JA, Yu M, Pely A, Engstrom A, Zhu H et al (2014) Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis. Cell 158:1110–1122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chang MC, Chang YT, Chen JY, Jeng YM, Yang CY, Tien YW, Yang SH, Chen HL, Liang TY, Wang CF et al (2016) Clinical significance of circulating tumor microemboli as a prognostic marker in patients with pancreatic ductal adenocarcinoma. Clin Chem 62:505–513

    Article  CAS  PubMed  Google Scholar 

  39. Hou JM, Krebs MG, Lancashire L, Sloane R, Backen A, Swain RK, Priest LJ, Greystoke A, Zhou C, Morris K et al (2012) Clinical significance and molecular characteristics of circulating tumor cells and circulating tumor microemboli in patients with small-cell lung cancer. J Clin Oncol 30:525–532

    Article  PubMed  Google Scholar 

  40. Lee M, Kim EJ, Cho Y, Kim S, Chung HH, Park NH, Song YS (2017) Predictive value of circulating tumor cells (CTCs) captured by microfluidic device in patients with epithelial ovarian cancer. Gynecol Oncol 145:361–365

    Article  PubMed  Google Scholar 

  41. Long E, Ilie M, Bence C, Butori C, Selva E, Lalvée S, Bonnetaud C, Poissonnet G, Lacour JP, Bahadoran P et al (2016) High expression of TRF2, SOX10, and CD10 in circulating tumor microemboli detected in metastatic melanoma patients. A potential impact for the assessment of disease aggressiveness. Cancer Med 5:1022–1030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mu Z, Wang C, Ye Z, Austin L, Civan J, Hyslop T, Palazzo JP, Jaslow R, Li B, Myers RE et al (2015) Prospective assessment of the prognostic value of circulating tumor cells and their clusters in patients with advanced-stage breast cancer. Breast Cancer Res Treat 154:563–571

    Article  CAS  PubMed  Google Scholar 

  43. Paoletti C, Li Y, Muñiz MC, Kidwell KM, Aung K, Thomas DG, Brown ME, Abramson VG, Irvin WJ Jr, Lin NU et al (2015) Significance of circulating tumor cells in metastatic triple-negative breast cancer patients within a randomized, phase II trial: TBCRC 019. Clin Cancer Res 21:2771–2779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Vona G, Estepa L, Béroud C, Damotte D, Capron F, Nalpas B, Mineur A, Franco D, Lacour B, Pol S et al (2004) Impact of cytomorphological detection of circulating tumor cells in patients with liver cancer. Hepatology 39:792–797

    Article  PubMed  Google Scholar 

  45. Wang C, Mu Z, Chervoneva I, Austin L, Ye Z, Rossi G, Palazzo JP, Sun C, Abu-Khalaf M, Myers RE et al (2017) Longitudinally collected CTCs and CTC-clusters and clinical outcomes of metastatic breast cancer. Breast Cancer Res Treat 161:83–94

    Article  PubMed  Google Scholar 

  46. Zhang D, Zhao L, Zhou P, Ma H, Huang F, Jin M, Dai X, Zheng X, Huang S, Zhang T (2017) Circulating tumor microemboli (CTM) and vimentin+ circulating tumor cells (CTCs) detected by a size-based platform predict worse prognosis in advanced colorectal cancer patients during chemotherapy. Cancer Cell Int 17:6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Zheng X, Fan L, Zhou P, Ma H, Huang S, Yu D, Zhao L, Yang S, Liu J, Huang A et al (2017) Detection of circulating tumor cells and circulating tumor microemboli in gastric cancer. Transl Oncol 10:431–441

    Article  PubMed  PubMed Central  Google Scholar 

  48. Jansson S, Bendahl P-O, Larsson A-M, Aaltonen KE, Rydén L (2016) Prognostic impact of circulating tumor cell apoptosis and clusters in serial blood samples from patients with metastatic breast cancer in a prospective observational cohort. BMC Cancer 16:433

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Krebs MG, Sloane R, Priest L, Lancashire L, Hou JM, Greystoke A, Ward TH, Ferraldeschi R, Hughes A, Clack G et al (2011) Evaluation and prognostic significance of circulating tumor cells in patients with non-small-cell lung cancer. J Clin Oncol 29:1556–1563

    Article  PubMed  Google Scholar 

  50. Cristofanilli M, Budd GT, Ellis MJ, Stopeck A, Matera J, Miller MC, Reuben JM, Doyle GV, Allard WJ, Terstappen LWMM et al (2004) Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N Engl J Med 351:781–791

    Article  CAS  PubMed  Google Scholar 

  51. Cristofanilli M, Pierga J-Y, Reuben J, Rademaker A, Davis AA, Peeters DJ, Fehm T, Nolé F, Gisbert-Criado R, Mavroudis D et al (2019) The clinical use of circulating tumor cells (CTCs) enumeration for staging of metastatic breast cancer (MBC): international expert consensus paper. Crit Rev Oncol Hematol 134:39–45

    Article  PubMed  Google Scholar 

  52. Larsson A-M, Jansson S, Bendahl P-O, Levin Tykjaer Jörgensen C, Loman N, Graffman C, Lundgren L, Aaltonen K, Rydén L (2018) Longitudinal enumeration and cluster evaluation of circulating tumor cells improve prognostication for patients with newly diagnosed metastatic breast cancer in a prospective observational trial. Breast Cancer Res 20:48

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Szczerba BM, Castro-Giner F, Vetter M, Krol I, Gkountela S, Landin J, Scheidmann MC, Donato C, Scherrer R, Singer J et al (2019) Neutrophils escort circulating tumour cells to enable cell cycle progression. Nature 566:553–557

    Article  CAS  PubMed  Google Scholar 

  54. Andree KC, Mentink A, Zeune LL, Terstappen L, Stoecklein NH, Neves RP, Driemel C, Lampignano R, Yang L, Neubauer H et al (2018) Toward a real liquid biopsy in metastatic breast and prostate cancer: diagnostic LeukApheresis increases CTC yields in a European prospective multicenter study (CTCTrap). Int J Cancer 143:2584–2591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Fehm TN, Meier-Stiegen F, Driemel C, Jäger B, Reinhardt F, Naskou J, Franken A, Neubauer H, Neves RP, van Dalum G et al (2018) Diagnostic leukapheresis for CTC analysis in breast cancer patients: CTC frequency, clinical experiences and recommendations for standardized reporting. Cytometry A 93:1213–1219

    Article  PubMed  Google Scholar 

  56. Fischer JC, Niederacher D, Topp SA, Honisch E, Schumacher S, Schmitz N, Föhrding LZ, Vay C, Hoffmann I, Kasprowicz NS et al (2013) Diagnostic leukapheresis enables reliable detection of circulating tumor cells of nonmetastatic cancer patients. Proc Natl Acad Sci 110:16580–16585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kim TH, Wang Y, Oliver CR, Thamm DH, Cooling L, Paoletti C, Smith KJ, Nagrath S, Hayes DF (2019) A temporary indwelling intravascular aphaeretic system for in vivo enrichment of circulating tumor cells. Nat Commun 10:1478

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Crosbie PA, Shah R, Krysiak P, Zhou C, Morris K, Tugwood J, Booton R, Blackhall F, Dive C (2016) Circulating tumor cells detected in the tumor-draining pulmonary vein are associated with disease recurrence after surgical resection of NSCLC. J Thorac Oncol 11:1793–1797

    Article  PubMed  PubMed Central  Google Scholar 

  59. Nagrath S, Sequist LV, Maheswaran S, Bell DW, Irimia D, Ulkus L, Smith MR, Kwak EL, Digumarthy S, Muzikansky A et al (2007) Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 450:1235–1239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Yan WT, Cui X, Chen Q, Li YF, Cui YH, Wang Y, Jiang J (2017) Circulating tumor cell status monitors the treatment responses in breast cancer patients: a meta-analysis. Sci Rep 7:43464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Yu M, Bardia A, Wittner BS, Stott SL, Smas ME, Ting DT, Isakoff SJ, Ciciliano JC, Wells MN, Shah AM et al (2013) Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science (New York, NY) 339:580–584

    Article  CAS  Google Scholar 

  62. Buscail E, Chiche L, Laurent C, Vendrely V, Denost Q, Denis J, Thumerel M, Lacorte JM, Bedel A, Moreau-Gaudry F et al (2019) Tumor-proximal liquid biopsy to improve diagnostic and prognostic performances of circulating tumor cells. Mol Oncol 13:1811–1826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Reddy RM, Murlidhar V, Zhao L, Grabauskiene S, Zhang Z, Ramnath N, Lin J, Chang AC, Carrott P, Lynch W et al (2016) Pulmonary venous blood sampling significantly increases the yield of circulating tumor cells in early-stage lung cancer. J Thorac Cardiovasc Surg 151:852–858

    Article  PubMed  Google Scholar 

  64. Sun Y-F, Guo W, Xu Y, Shi Y-H, Gong Z-J, Ji Y, Du M, Zhang X, Hu B, Huang A et al (2018) Circulating tumor cells from different vascular sites exhibit spatial heterogeneity in epithelial and mesenchymal composition and distinct clinical significance in hepatocellular carcinoma. Clin Cancer Res 24:547–559

    Article  CAS  PubMed  Google Scholar 

  65. Au SH, Storey BD, Moore JC, Tang Q, Chen Y-L, Javaid S, Sarioglu AF, Sullivan R, Madden MW, O’Keefe R et al (2016) Clusters of circulating tumor cells traverse capillary-sized vessels. Proc Natl Acad Sci 113:4947–4952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Gkountela S, Castro-Giner F, Szczerba BM, Vetter M, Landin J, Scherrer R, Krol I, Scheidmann MC, Beisel C, Stirnimann CU et al (2019) Circulating tumor cell clustering shapes DNA methylation to enable metastasis seeding. Cell 176:98-112.e114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Amintas S, Bedel A, Moreau-Gaudry F, Boutin J, Buscail L, Merlio JP, Vendrely V, Dabernat S, Buscail E (2020) Circulating tumor cell clusters: united we stand divided we fall. Int J Mol Sci 21:2653

    Article  CAS  PubMed Central  Google Scholar 

  68. Cho EH, Wendel M, Luttgen M, Yoshioka C, Marrinucci D, Lazar D, Schram E, Nieva J, Bazhenova L, Morgan A et al (2012) Characterization of circulating tumor cell aggregates identified in patients with epithelial tumors. Phys Biol 9:016001

    Article  PubMed  PubMed Central  Google Scholar 

  69. Amantini C, Morelli MB, Nabissi M, Piva F, Marinelli O, Maggi F, Bianchi F, Bittoni A, Berardi R, Giampieri R et al (2019) Expression profiling of circulating tumor cells in pancreatic ductal adenocarcinoma patients: biomarkers predicting overall survival. Front Oncol 9:874

    Article  PubMed  PubMed Central  Google Scholar 

  70. Buscail E, Alix-Panabières C, Quincy P, Cauvin T, Chauvet A, Degrandi O, Caumont C, Verdon S, Lamrissi I, Moranvillier I et al (2019) High clinical value of liquid biopsy to detect circulating tumor cells and tumor exosomes in pancreatic ductal adenocarcinoma patients eligible for up-front surgery. Cancers (Basel). https://doi.org/10.3390/cancers11111656

    Article  Google Scholar 

  71. Catenacci DV, Chapman CG, Xu P, Koons A, Konda VJ, Siddiqui UD, Waxman I (2015) Acquisition of portal venous circulating tumor cells from patients with pancreaticobiliary cancers by endoscopic ultrasound. Gastroenterology 149:1794-1803.e1794

    Article  PubMed  Google Scholar 

  72. Manjunath Y, Upparahalli SV, Suvilesh KN, Avella DM, Kimchi ET, Staveley-O’Carroll KF, Li G, Kaifi JT (2019) Circulating tumor cell clusters are a potential biomarker for detection of non-small cell lung cancer. Lung Cancer 134:147–150

    Article  PubMed  Google Scholar 

  73. Murlidhar V, Reddy RM, Fouladdel S, Zhao L, Ishikawa MK, Grabauskiene S, Zhang Z, Lin J, Chang AC, Carrott P et al (2017) Poor prognosis indicated by venous circulating tumor cell clusters in early-stage lung cancers. Can Res 77:5194–5206

    Article  CAS  Google Scholar 

  74. Sawabata N, Susaki Y, Nakamura T, Kawaguchi T, Yasukawa M, Taniguchi S (2020) Cluster circulating tumor cells in surgical cases of lung cancer. Gen Thorac Cardiovasc Surg 68:975–983

    Article  PubMed  Google Scholar 

  75. Molnar B, Ladanyi A, Tanko L, Sréter L, Tulassay Z (2001) Circulating tumor cell clusters in the peripheral blood of colorectal cancer patients. Clin Cancer Res 7:4080–4085

    CAS  PubMed  Google Scholar 

  76. Sarioglu AF, Aceto N, Kojic N, Donaldson MC, Zeinali M, Hamza B, Engstrom A, Zhu H, Sundaresan TK, Miyamoto DT et al (2015) A microfluidic device for label-free, physical capture of circulating tumor cell clusters. Nat Methods 12:685–691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Costa C, Muinelo-Romay L, Cebey-López V, Pereira-Veiga T, Martínez-Pena I, Abreu M, Abalo A, Lago-Lestón RM, Abuín C, Palacios P et al (2020) Analysis of a real-world cohort of metastatic breast cancer patients shows circulating tumor cell clusters (CTC-clusters) as predictors of patient outcomes. Cancers 12:1111

    Article  CAS  PubMed Central  Google Scholar 

  78. Divella R, Daniele A, Abbate I, Bellizzi A, Savino E, Simone G, Giannone G, Giuliani F, Fazio V, Gadaleta-Caldarola G et al (2014) The presence of clustered circulating tumor cells (CTCs) and circulating cytokines define an aggressive phenotype in metastatic colorectal cancer. Cancer Causes Control 25:1531–1541

    Article  PubMed  Google Scholar 

  79. Kulasinghe A, Schmidt H, Perry C, Whitfield B, Kenny L, Nelson C, Warkiani ME, Punyadeera C (2018) A collective route to head and neck cancer metastasis. Sci Rep 8:1–8

    Article  CAS  Google Scholar 

  80. Okegawa T, Ninomiya N, Masuda K, Nakamura Y, Tambo M, Nutahara K (2018) AR-V7 in circulating tumor cells cluster as a predictive biomarker of abiraterone acetate and enzalutamide treatment in castration-resistant prostate cancer patients. Prostate 78:576–582

    Article  CAS  PubMed  Google Scholar 

  81. Paoletti C, Miao J, Dolce EM, Darga EP, Repollet MI, Doyle GV, Gralow JR, Hortobagyi GN, Smerage JB, Barlow WE et al (2019) Circulating tumor cell clusters in patients with metastatic breast cancer: a SWOG S0500 Translational Medicine Study. Clin Cancer Res 25:6089–6097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Klimek M (2019) Pulmonary lymphangitis carcinomatosis: systematic review and meta-analysis of case reports, 1970–2018. Postgrad Med 131:309–318

    Article  PubMed  Google Scholar 

  83. Delattre JY, Krol G, Thaler HT, Posner JB (1988) Distribution of brain metastases. Arch Neurol 45:741–744

    Article  CAS  PubMed  Google Scholar 

  84. Hwang TL, Close TP, Grego JM, Brannon WL, Gonzales F (1996) Predilection of brain metastasis in gray and white matter junction and vascular border zones. Cancer 77:1551–1555

    Article  CAS  PubMed  Google Scholar 

  85. Duda DG, Duyverman AMMJ, Kohno M, Snuderl M, Steller EJA, Fukumura D, Jain RK (2010) Malignant cells facilitate lung metastasis by bringing their own soil. Proc Natl Acad Sci 107:21677–21682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Jiang X, Wong KHK, Khankhel AH, Zeinali M, Reategui E, Phillips MJ, Luo X, Aceto N, Fachin F, Hoang AN et al (2017) Microfluidic isolation of platelet-covered circulating tumor cells. Lab Chip 17:3498–3503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Chen MB, Hajal C, Benjamin DC, Yu C, Azizgolshani H, Hynes RO, Kamm RD (2018) Inflamed neutrophils sequestered at entrapped tumor cells via chemotactic confinement promote tumor cell extravasation. Proc Natl Acad Sci 115:7022–7027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Camerer E, Qazi AA, Duong DN, Cornelissen I, Advincula R, Coughlin SR (2004) Platelets, protease-activated receptors, and fibrinogen in hematogenous metastasis. Blood 104:397–401

    Article  CAS  PubMed  Google Scholar 

  89. Haemmerle M, Taylor ML, Gutschner T, Pradeep S, Cho MS, Sheng J, Lyons YM, Nagaraja AS, Dood RL, Wen Y et al (2017) Platelets reduce anoikis and promote metastasis by activating YAP1 signaling. Nat Commun 8:1–15

    Article  CAS  Google Scholar 

  90. Labelle M, Begum S, Hynes RO (2011) Direct signaling between platelets and cancer cells induces an epithelial-mesenchymal-like transition and promotes metastasis. Cancer Cell 20:576–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Egan K, Cooke N, Kenny D (2014) Living in shear: platelets protect cancer cells from shear induced damage. Clin Exp Metas 31:697–704

    Article  Google Scholar 

  92. Xiong G, Chen J, Zhang G, Wang S, Kawasaki K, Zhu J, Zhang Y, Nagata K, Li Z, Zhou BP et al (2020) Hsp47 promotes cancer metastasis by enhancing collagen-dependent cancer cell-platelet interaction. Proc Natl Acad Sci 117:3748–3758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Cheung KJ, Padmanaban V, Silvestri V, Schipper K, Cohen JD, Fairchild AN, Gorin MA, Verdone JE, Pienta KJ, Bader JS et al (2016) Polyclonal breast cancer metastases arise from collective dissemination of keratin 14-expressing tumor cell clusters. Proc Natl Acad Sci USA 113:E854-863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Maddipati R, Stanger BZ (2015) Pancreatic cancer metastases harbor evidence of polyclonality. Cancer Discov 5:1086–1097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Echeverria GV, Powell E, Seth S, Ge Z, Carugo A, Bristow C, Peoples M, Robinson F, Qiu H, Shao J et al (2018) High-resolution clonal mapping of multi-organ metastasis in triple negative breast cancer. Nat Commun 9:5079

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Janiszewska M, Tabassum DP, Castaño Z, Cristea S, Yamamoto KN, Kingston NL, Murphy KC, Shu S, Harper NW, Del Alcazar CG et al (2019) Subclonal cooperation drives metastasis by modulating local and systemic immune microenvironments. Nat Cell Biol 21:879–888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Kok SY, Oshima H, Takahashi K, Nakayama M, Murakami K, Ueda HR, Miyazono K, Oshima M (2021) Malignant subclone drives metastasis of genetically and phenotypically heterogenous cell clusters through fibrotic niche generation. Nat Commun 12:863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Liu X, Taftaf R, Kawaguchi M, Chang YF, Chen W, Entenberg D, Zhang Y, Gerratana L, Huang S, Patel DB et al (2019) Homophilic CD44 interactions mediate tumor cell aggregation and polyclonal metastasis in patient-derived breast cancer models. Cancer Discov 9:96–113

    Article  PubMed  Google Scholar 

  99. Lo HC, Xu Z, Kim IS, Pingel B, Aguirre S, Kodali S, Liu J, Zhang W, Muscarella AM, Hein SM et al (2020) Resistance to natural killer cell immunosurveillance confers a selective advantage to polyclonal metastasis. Nature Cancer 1:709–722

    Article  PubMed  Google Scholar 

  100. Mizukoshi K, Okazawa Y, Haeno H, Koyama Y, Sulidan K, Komiyama H, Saeki H, Ohtsuji N, Ito Y, Kojima Y et al (2020) Metastatic seeding of human colon cancer cell clusters expressing the hybrid epithelial/mesenchymal state. Int J Cancer 146:2547–2562

    Article  CAS  PubMed  Google Scholar 

  101. Naffar-Abu Amara S, Kuiken HJ, Selfors LM, Butler T, Leung ML, Leung CT, Kuhn EP, Kolarova T, Hage C, Ganesh K et al (2020) Transient commensal clonal interactions can drive tumor metastasis. Nat Commun 11:5799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Cheung KJ, Ewald AJ (2016) A collective route to metastasis: seeding by tumor cell clusters. Science 352:167–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Watanabe S (1954) The metastasizability of tumor cells. Cancer 7:215–223

    Article  CAS  PubMed  Google Scholar 

  104. Fidler IJ (1973) The relationship of embolic homogeneity, number, size and viability to the incidence of experimental metastasis. Eur J Cancer 9:223–227

    Article  CAS  PubMed  Google Scholar 

  105. Liotta LA, Saidel MG, Kleinerman J (1976) The significance of hematogenous tumor cell clumps in the metastatic process. Cancer Res 36:889–894

    CAS  PubMed  Google Scholar 

  106. Zajac O, Raingeaud J, Libanje F, Lefebvre C, Sabino D, Martins I, Roy P, Benatar C, Canet-Jourdan C, Azorin P et al (2018) Tumour spheres with inverted polarity drive the formation of peritoneal metastases in patients with hypermethylated colorectal carcinomas. Nat Cell Biol 20:296–306

    Article  CAS  PubMed  Google Scholar 

  107. Allen TA, Asad D, Amu E, Hensley MT, Cores J, Vandergriff A, Tang J, Dinh P-U, Shen D, Qiao L et al (2019) Circulating tumor cells exit circulation while maintaining multicellularity, augmenting metastatic potential. J Cell Sci 132:jcs231563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Wrenn ED, Moore BM, Greenwood E, McBirney M, Cheung KJ (2020) Optimal, large-scale propagation of mouse mammary tumor organoids. J Mammary Gland Biol Neoplasia 10:1–14. https://doi.org/10.1007/s10911-020-09464-1

    Article  Google Scholar 

  109. Wrenn ED, Yamamoto A, Moore BM, Huang Y, McBirney M, Thomas AJ, Greenwood E, Rabena YF, Rahbar H, Partridge SC, Cheung KJ (2020) Regulation of collective metastasis by nanolumenal signaling. Cell 183:395–410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Birkbak NJ, McGranahan N (2020) Cancer genome evolutionary trajectories in metastasis. Cancer Cell 37:8–19

    Article  CAS  PubMed  Google Scholar 

  111. Gundem G, Van Loo P, Kremeyer B, Alexandrov LB, Tubio JMC, Papaemmanuil E, Brewer DS, Kallio HML, Högnäs G, Annala M et al (2015) The evolutionary history of lethal metastatic prostate cancer. Nature 520:353–357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Hu Z, Li Z, Ma Z, Curtis C (2020) Multi-cancer analysis of clonality and the timing of systemic spread in paired primary tumors and metastases. Nat Genet 52:701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Dang HX, Krasnick BA, White BS, Grossman JG, Strand MS, Zhang J, Cabanski CR, Miller CA, Fulton RS, Goedegebuure SP et al (2020) The clonal evolution of metastatic colorectal cancer. Sci Adv 6:eaay9691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Leung ML, Davis A, Gao R, Casasent A, Wang Y, Sei E, Vilar E, Maru D, Kopetz S, Navin NE (2017) Single-cell DNA sequencing reveals a late-dissemination model in metastatic colorectal cancer. Genome Res 27:1287–1299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Ulintz PJ, Greenson JK, Wu R, Fearon ER, Hardiman KM (2018) Lymph node metastases in colon cancer are polyclonal. Clin Cancer Res 24:2214–2224

    Article  CAS  PubMed  Google Scholar 

  116. Wei Q, Ye Z, Zhong X, Li L, Wang C, Myers RE, Palazzo JP, Fortuna D, Yan A, Waldman SA et al (2017) Multiregion whole-exome sequencing of matched primary and metastatic tumors revealed genomic heterogeneity and suggested polyclonal seeding in colorectal cancer metastasis. Ann Oncol 28:2135–2141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. McPherson A, Roth A, Laks E, Masud T, Bashashati A, Zhang AW, Ha G, Biele J, Yap D, Wan A et al (2016) Divergent modes of clonal spread and intraperitoneal mixing in high-grade serous ovarian cancer. Nat Genet 48:758–767

    Article  CAS  PubMed  Google Scholar 

  118. Hirotsu Y, Hada M, Amemiya K, Oyama T, Mochizuki H, Omata M (2020) Multi-regional sequencing reveals clonal and polyclonal seeding from primary tumor to metastases in advanced gastric cancer. J Gastroenterol 55:553–564

    Article  PubMed  Google Scholar 

  119. Dong LQ, Shi Y, Ma LJ, Yang LX, Wang XY, Zhang S, Wang ZC, Duan M, Zhang Z, Liu LZ et al (2018) Spatial and temporal clonal evolution of intrahepatic cholangiocarcinoma. J Hepatol 69:89–98

    Article  CAS  PubMed  Google Scholar 

  120. Siegel MB, He X, Hoadley KA, Hoyle A, Pearce JB, Garrett AL, Kumar S, Moylan VJ, Brady CM, Van Swearingen AE et al (2018) Integrated RNA and DNA sequencing reveals early drivers of metastatic breast cancer. J Clin Invest 128:1371–1383

    Article  PubMed  PubMed Central  Google Scholar 

  121. Ullah I, Karthik GM, Alkodsi A, Kjällquist U, Stålhammar G, Lövrot J, Martinez NF, Lagergren J, Hautaniemi S, Hartman J et al (2018) Evolutionary history of metastatic breast cancer reveals minimal seeding from axillary lymph nodes. J Clin Invest 128:1355–1370

    Article  PubMed  PubMed Central  Google Scholar 

  122. Casasent AK, Schalck A, Gao R, Sei E, Long A, Pangburn W, Casasent T, Meric-Bernstam F, Edgerton ME, Navin NE (2018) Multiclonal invasion in breast tumors identified by topographic single cell sequencing. Cell 172:205-217.e212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Pareja F, Brown DN, Lee JY, Da Cruz Paula A, Selenica P, Bi R, Geyer FC, Gazzo A, da Silva EM, Vahdatinia M et al (2020) Whole-exome sequencing analysis of the progression from non-low-grade ductal carcinoma in situ to invasive ductal carcinoma. Clin Cancer Res 26:3682–3693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Polonsky M, Rimer J, Kern-Perets A, Zaretsky I, Miller S, Bornstein C, David E, Kopelman NM, Stelzer G, Porat Z et al (2018) Induction of CD4 T cell memory by local cellular collectivity. Science (New York, NY) 360:eaaj1853

    Article  CAS  Google Scholar 

  125. Chen CC, Wang L, Plikus MV, Jiang TX, Murray PJ, Ramos R, Guerrero-Juarez CF, Hughes MW, Lee OK, Shi S et al (2015) Organ-level quorum sensing directs regeneration in hair stem cell populations. Cell 161:277–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Seeley TD, Visscher PK (2004) Quorum sensing during nest-site selection by honeybee swarms. Behav Ecol Sociobiol 56:594–601

    Article  Google Scholar 

  127. Shyer AE, Huycke TR, Lee C, Mahadevan L, Tabin CJ (2015) Bending gradients: how the intestinal stem cell gets its home. Cell 161:569–580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Xin T, Greco V, Myung P (2016) Hardwiring stem cell communication through tissue structure. Cell 164:1212–1225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Ben-Jacob E, Coffey DS, Levine H (2012) Bacterial survival strategies suggest rethinking cancer cooperativity. Trends Microbiol 20:403–410

    Article  CAS  PubMed  Google Scholar 

  130. Lambert G, Estévez-Salmeron L, Oh S, Liao D, Emerson BM, Tlsty TD, Austin RH (2011) An analogy between the evolution of drug resistance in bacterial communities and malignant tissues. Nat Rev Cancer 11:375–382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Papenfort K, Bassler BL (2016) Quorum sensing signal-response systems in Gram-negative bacteria. Nat Rev Microbiol 14:576–588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Montaudouin C, Anson M, Hao Y, Duncker SV, Fernandez T, Gaudin E, Ehrenstein M, Kerr WG, Colle J-H, Bruhns P et al (2013) Quorum sensing contributes to activated IgM-secreting B cell homeostasis. J Immunol 190:106–114

    Article  CAS  PubMed  Google Scholar 

  133. Youk H, Lim WA (2014) Secreting and sensing the same molecule allows cells to achieve versatile social behaviors. Science (New York, NY) 343:1242782

    Article  CAS  Google Scholar 

  134. Korolev KS, Xavier JB, Gore J (2014) Turning ecology and evolution against cancer. Nat Rev Cancer 14:371–380

    Article  CAS  PubMed  Google Scholar 

  135. Tabassum DP, Polyak K (2015) Tumorigenesis: it takes a village. Nat Rev Cancer 15:473–483

    Article  CAS  PubMed  Google Scholar 

  136. Archetti M, Pienta KJ (2019) Cooperation among cancer cells: applying game theory to cancer. Nat Rev Cancer 19:110–117

    Article  CAS  PubMed  Google Scholar 

  137. Yamada KM, Sixt M (2019) Mechanisms of 3D cell migration. Nat Rev Mol Cell Biol 20:738–752

    Article  CAS  PubMed  Google Scholar 

  138. Haeger A, Alexander S, Vullings M, Kaiser FMP, Veelken C, Flucke U, Koehl GE, Hirschberg M, Flentje M, Hoffman RM et al (2020) Collective cancer invasion forms an integrin-dependent radioresistant niche. J Exp Med 217:e20181184

    Article  PubMed  CAS  Google Scholar 

  139. Colak-Champollion T, Lan L, Jadhav AR, Yamaguchi N, Venkiteswaran G, Patel H, Cammer M, Meier-Schellersheim M, Knaut H (2019) Cadherin-mediated cell coupling coordinates chemokine sensing across collectively migrating cells. Curr Biol 29:2570-2579.e2577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Haeger A, Krause M, Wolf K, Friedl P (2014) Cell jamming: collective invasion of mesenchymal tumor cells imposed by tissue confinement. BBA 1840:2386–2395

    CAS  PubMed  Google Scholar 

  141. Trepat X, Wasserman MR, Angelini TE, Millet E, Weitz DA, Butler JP, Fredberg JJ (2009) Physical forces during collective cell migration. Nat Phys 5:426–430

    Article  CAS  Google Scholar 

  142. Konen J, Summerbell E, Dwivedi B, Galior K, Hou Y, Rusnak L, Chen A, Saltz J, Zhou W, Boise LH et al (2017) Image-guided genomics of phenotypically heterogeneous populations reveals vascular signalling during symbiotic collective cancer invasion. Nat Commun 8:15078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Aman A, Piotrowski T (2008) Wnt/beta-catenin and Fgf signaling control collective cell migration by restricting chemokine receptor expression. Dev Cell 15:749–761

    Article  CAS  PubMed  Google Scholar 

  144. Mishra AK, Campanale JP, Mondo JA, Montell DJ (2019) Cell interactions in collective cell migration. Development (Cambridge, England) 146:dev172056

    Article  CAS  Google Scholar 

  145. Silver DL, Montell DJ (2001) Paracrine signaling through the JAK/STAT pathway activates invasive behavior of ovarian epithelial cells in drosophila. Cell 107:831–841

    Article  CAS  PubMed  Google Scholar 

  146. Gerhardt H, Golding M, Fruttiger M, Ruhrberg C, Lundkvist A, Abramsson A, Jeltsch M, Mitchell C, Alitalo K, Shima D, Betsholtz C (2003) VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol 161:1163–1177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Cheung KJ, Gabrielson E, Werb Z, Ewald AJ (2013) Collective invasion in breast cancer requires a conserved basal epithelial program. Cell 155:1639–1651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Zhang J, Goliwas KF, Wang W, Taufalele PV, Bordeleau F, Reinhart-King CA (2019) Energetic regulation of coordinated leader-follower dynamics during collective invasion of breast cancer cells. Proc Natl Acad Sci USA 116:7867–7872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Gao XL, Wu JS, Cao MX, Gao SY, Cen X, Jiang YP, Wang SS, Tang YJ, Chen QM, Liang XH et al (2017) Cytokeratin-14 contributes to collective invasion of salivary adenoid cystic carcinoma. PLoS ONE 12:e0171341

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Khalil AA, Ilina O, Vasaturo A, Venhuizen JH, Vullings M, Venhuizen V, Bilos A, Figdor CG, Span PN, Friedl P (2020) Collective invasion induced by an autocrine purinergic loop through connexin-43 hemichannels. J Cell Biol 219:e201911120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Kim YH, Choi YW, Lee J, Soh EY, Kim J-H, Park TJ (2017) Senescent tumor cells lead the collective invasion in thyroid cancer. Nat Commun 8:1–14

    CAS  Google Scholar 

  152. Yang C, Cao M, Liu Y, He Y, Du Y, Zhang G, Gao F (2019) Inducible formation of leader cells driven by CD44 switching gives rise to collective invasion and metastases in luminal breast carcinomas. Oncogene 38:7113–7132

    Article  CAS  PubMed  Google Scholar 

  153. Commander R, Wei C, Sharma A, Mouw JK, Burton LJ, Summerbell E, Mahboubi D, Peterson RJ, Konen J, Zhou W et al (2020) Subpopulation targeting of pyruvate dehydrogenase and GLUT1 decouples metabolic heterogeneity during collective cancer cell invasion. Nat Commun 11:1533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Summerbell ER, Mouw JK, Bell JSK, Knippler CM, Pedro B, Arnst JL, Khatib TO, Commander R, Barwick BG, Konen J et al (2020) Epigenetically heterogeneous tumor cells direct collective invasion through filopodia-driven fibronectin micropatterning. Sci Adv 6:eaaz6197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Zoeller EL, Pedro B, Konen J, Dwivedi B, Rupji M, Sundararaman N, Wang L, Horton JR, Zhong C, Barwick BG et al (2019) Genetic heterogeneity within collective invasion packs drives leader and follower cell phenotypes. J Cell Sci 132:231514

    Article  CAS  Google Scholar 

  156. Bilandzic M, Rainczuk A, Green E, Fairweather N, Jobling TW, Plebanski M, Stephens AN (2019) Keratin-14 (KRT14) positive leader cells mediate mesothelial clearance and invasion by ovarian cancer cells. Cancers 11:1228

    Article  CAS  PubMed Central  Google Scholar 

  157. Hwang PY, Brenot A, King AC, Longmore GD, George SC (2019) Randomly distributed K14(+) breast tumor cells polarize to the leading edge and guide collective migration in response to chemical and mechanical environmental cues. Can Res 79:1899–1912

    Article  CAS  Google Scholar 

  158. Quan Q, Wang X, Lu C, Ma W, Wang Y, Xia G, Wang C, Yang G (2020) Cancer stem-like cells with hybrid epithelial/mesenchymal phenotype leading the collective invasion. Cancer Sci 111:467–476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Riahi R, Sun J, Wang S, Long M, Zhang DD, Wong PK (2015) Notch1-Dll4 signalling and mechanical force regulate leader cell formation during collective cell migration. Nat Commun 6:6556

    Article  CAS  PubMed  Google Scholar 

  160. Gaggioli C, Hooper S, Hidalgo-Carcedo C, Grosse R, Marshall JF, Harrington K, Sahai E (2007) Fibroblast-led collective invasion of carcinoma cells with differing roles for RhoGTPases in leading and following cells. Nat Cell Biol 9:1392–1400

    Article  CAS  PubMed  Google Scholar 

  161. Hanley CJ, Henriet E, Sirka OK, Thomas GJ, Ewald AJ (2020) Tumor-resident stromal cells promote breast cancer invasion through regulation of the basal phenotype. Mol Cancer Res 18:1615–1622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Hwang HJ, Oh M-S, Lee DW, Kuh H-J (2019) Multiplex quantitative analysis of stroma-mediated cancer cell invasion, matrix remodeling, and drug response in a 3D co-culture model of pancreatic tumor spheroids and stellate cells. J Exp Clin Cancer Res 38:258

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  163. Muinonen-Martin AJ, Susanto O, Zhang Q, Smethurst E, Faller WJ, Veltman DM, Kalna G, Lindsay C, Bennett DC, Sansom OJ et al (2014) Melanoma cells break down LPA to establish local gradients that drive chemotactic dispersal. PLoS Biol 12:e1001966

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Cai D, Chen SC, Prasad M, He L, Wang X, Choesmel-Cadamuro V, Sawyer JK, Danuser G, Montell DJ (2014) Mechanical feedback through E-cadherin promotes direction sensing during collective cell migration. Cell 157:1146–1159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Das T, Safferling K, Rausch S, Grabe N, Boehm H, Spatz JP (2015) A molecular mechanotransduction pathway regulates collective migration of epithelial cells. Nat Cell Biol 17:276–287

    Article  CAS  PubMed  Google Scholar 

  166. Reffay M, Parrini MC, Cochet-Escartin O, Ladoux B, Buguin A, Coscoy S, Amblard F, Camonis J, Silberzan P (2014) Interplay of RhoA and mechanical forces in collective cell migration driven by leader cells. Nat Cell Biol 16:217–223

    Article  CAS  PubMed  Google Scholar 

  167. Paine IS, Lewis MT (2017) The terminal end bud: the little engine that could. J Mammary Gland Biol Neoplasia 22:93–108

    Article  PubMed  PubMed Central  Google Scholar 

  168. McCaffrey LM, Montalbano J, Mihai C, Macara IG (2012) Loss of the Par3 polarity protein promotes breast tumorigenesis and metastasis. Cancer Cell 22:601–614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Scheele CLGJ, Hannezo E, Muraro MJ, Zomer A, Langedijk NSM, van Oudenaarden A, Simons BD, van Rheenen J (2017) Identity and dynamics of mammary stem cells during branching morphogenesis. Nature 542:313–317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Wiseman BS, Sternlicht MD, Lund LR, Alexander CM, Mott J, Bissell MJ, Soloway P, Itohara S, Werb Z (2003) Site-specific inductive and inhibitory activities of MMP-2 and MMP-3 orchestrate mammary gland branching morphogenesis. J Cell Biol 162:1123–1133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Binnewies M, Roberts EW, Kersten K, Chan V, Fearon DF, Merad M, Coussens LM, Gabrilovich DI, Ostrand-Rosenberg S, Hedrick CC et al (2018) Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat Med 24:541–550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Egeblad M, Nakasone ES, Werb Z (2010) Tumors as organs: complex tissues that interface with the entire organism. Dev Cell 18:884–901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Hirata E, Sahai E (2017) Tumor microenvironment and differential responses to therapy. Cold Spring Harb Perspect Med 7:a026781

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  174. Lyssiotis CA, Kimmelman AC (2017) Metabolic interactions in the tumor microenvironment. Trends Cell Biol 27:863–875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Sahai E, Astsaturov I, Cukierman E, DeNardo DG, Egeblad M, Evans RM, Fearon D, Greten FR, Hingorani SR, Hunter T et al (2020) A framework for advancing our understanding of cancer-associated fibroblasts. Nat Rev Cancer 20:174–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Patsialou A, Wyckoff J, Wang Y, Goswami S, Stanley ER, Condeelis JS (2009) Invasion of human breast cancer cells in vivo requires both paracrine and autocrine loops involving the colony-stimulating factor-1 receptor. Can Res 69:9498–9506

    Article  CAS  Google Scholar 

  177. Finkernagel F, Reinartz S, Lieber S, Adhikary T, Wortmann A, Hoffmann N, Bieringer T, Nist A, Stiewe T, Jansen JM et al (2016) The transcriptional signature of human ovarian carcinoma macrophages is associated with extracellular matrix reorganization. Oncotarget 7:75339–75352

    Article  PubMed  PubMed Central  Google Scholar 

  178. Hanna SJ, McCoy-Simandle K, Leung E, Genna A, Condeelis J, Cox D (2019) Tunneling nanotubes, a novel mode of tumor cell–macrophage communication in tumor cell invasion. J Cell Sci 132:jcs223321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Roh-Johnson M, Shah AN, Stonick JA, Poudel KR, Kargl J, Yang GH, di Martino J, Hernandez RE, Gast CE, Zarour LR et al (2017) Macrophage-dependent cytoplasmic transfer during melanoma invasion in vivo. Dev Cell 43:549-562.e546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Matsumura Y, Ito Y, Mezawa Y, Sulidan K, Daigo Y, Hiraga T, Mogushi K, Wali N, Suzuki H, Itoh T et al (2019) Stromal fibroblasts induce metastatic tumor cell clusters via epithelial-mesenchymal plasticity. Life Sci Alliance 2:425

    Article  Google Scholar 

  181. Labernadie A, Kato T, Brugues A, Serra-Picamal X, Derzsi S, Arwert E, Weston A, Gonzalez-Tarrago V, Elosegui-Artola A, Albertazzi L et al (2017) A mechanically active heterotypic E-cadherin/N-cadherin adhesion enables fibroblasts to drive cancer cell invasion. Nat Cell Biol 19:224–237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Miranti CK, Brugge JS (2002) Sensing the environment: a historical perspective on integrin signal transduction. Nat Cell Biol 4:E83–E90

    Article  CAS  PubMed  Google Scholar 

  183. Taddei ML, Giannoni E, Fiaschi T, Chiarugi P (2012) Anoikis: an emerging hallmark in health and diseases. J Pathol 226:380–393

    Article  CAS  PubMed  Google Scholar 

  184. Celià-Terrassa T, Kang Y (2016) Distinctive properties of metastasis-initiating cells. Genes Dev 30:892–908

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  185. Piskounova E, Agathocleous M, Murphy MM, Hu Z, Huddlestun SE, Zhao Z, Leitch AM, Johnson TM, DeBerardinis RJ, Morrison SJ (2015) Oxidative stress inhibits distant metastasis by human melanoma cells. Nature 527:186–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Valiente M, Obenauf AC, Jin X, Chen Q, Zhang XHF, Lee DJ, Chaft JE, Kris MG, Huse JT, Brogi E et al (2014) Serpins promote cancer cell survival and vascular co-option in brain metastasis. Cell 156:1002–1016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Al Habyan S, Kalos C, Szymborski J, McCaffrey L (2018) Multicellular detachment generates metastatic spheroids during intra-abdominal dissemination in epithelial ovarian cancer. Oncogene 37:5127–5135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Kantak SS, Kramer RH (1998) E-cadherin regulates anchorage-independent growth and survival in oral squamous cell carcinoma cells. J Biol Chem 273:16953–16961

    Article  CAS  PubMed  Google Scholar 

  189. Zhao Q, Barclay M, Hilkens J, Guo X, Barrow H, Rhodes JM, Yu L-G (2010) Interaction between circulating galectin-3 and cancer-associated MUC1 enhances tumour cell homotypic aggregation and prevents anoikis. Mol Cancer 9:154

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  190. Pavlova NN, Pallasch C, Elia AEH, Braun CJ, Westbrook TF, Hemann M, Elledge SJ (2013) A role for PVRL4-driven cell-cell interactions in tumorigenesis. Life 2:358

    Google Scholar 

  191. Brown CW, Amante JJ, Mercurio AM (2018) Cell clustering mediated by the adhesion protein PVRL4 is necessary for alpha6beta4 integrin-promoted ferroptosis resistance in matrix-detached cells. J Biol Chem 293:12741–12748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Nakamura K, Iwamoto R, Mekada E (1995) Membrane-anchored heparin-binding EGF-like growth factor (HB-EGF) and diphtheria toxin receptor-associated protein (DRAP27)/CD9 form a complex with integrin alpha 3 beta 1 at cell-cell contact sites. J Cell Biol 129:1691–1705

    Article  CAS  PubMed  Google Scholar 

  193. Yu X, Miyamoto S, Mekada E (2000) Integrin alpha 2 beta 1-dependent EGF receptor activation at cell-cell contact sites. J Cell Sci 113:2139–2147

    Article  CAS  PubMed  Google Scholar 

  194. Hudson LG, Zeineldin R, Stack MS (2008) Phenotypic plasticity of neoplastic ovarian epithelium: unique cadherin profiles in tumor progression. Clin Exp Metas 25:643–655

    Article  CAS  Google Scholar 

  195. Klymenko Y, Johnson J, Bos B, Lombard R, Campbell L, Loughran E, Stack MS (2017) Heterogeneous cadherin expression and multicellular aggregate dynamics in ovarian cancer dissemination. Neoplasia 19:549–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Rayavarapu RR, Heiden B, Pagani N, Shaw MM, Shuff S, Zhang S, Schafer ZT (2015) The role of multicellular aggregation in the survival of ErbB2-positive breast cancer cells during extracellular matrix detachment. J Biol Chem 290:8722–8733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Reddy P, Liu L, Ren C, Lindgren P, Boman K, Shen Y, Lundin E, Ottander U, Rytinki M, Liu K (2005) Formation of E-cadherin-mediated cell-cell adhesion activates AKT and mitogen activated protein kinase via phosphatidylinositol 3 kinase and ligand-independent activation of epidermal growth factor receptor in ovarian cancer cells. Mol Endocrinol 19:2564–2578

    Article  CAS  PubMed  Google Scholar 

  198. Labuschagne CF, Cheung EC, Blagih J, Domart MC, Vousden KH (2019) Cell clustering promotes a metabolic switch that supports metastatic colonization. Cell Metab 30:720-734.e725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Ilina O, Gritsenko PG, Syga S, Lippoldt J, La Porta CAM, Chepizhko O, Grosser S, Vullings M, Bakker G-J, Starruß J et al (2020) Cell–cell adhesion and 3D matrix confinement determine jamming transitions in breast cancer invasion. Nat Cell Biol 22:1103–1115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Kurley SJ, Tischler V, Bierie B, Novitskiy SV, Noske A, Varga Z, Zürrer-Härdi U, Brandt S, Carnahan RH, Cook RS et al (2020) A Requirement for p120-catenin in the metastasis of invasive ductal breast cancer. J Cell Sci. 134(6):jcs250639

    Article  CAS  Google Scholar 

  201. Padmanaban V, Krol I, Suhail Y, Szczerba BM, Aceto N, Bader JS, Ewald AJ (2019) E-cadherin is required for metastasis in multiple models of breast cancer. Nature 573:439–444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Mohme M, Riethdorf S, Pantel K (2017) Circulating and disseminated tumour cells—mechanisms of immune surveillance and escape. Nat Rev Clin Oncol 14:155–167

    Article  CAS  PubMed  Google Scholar 

  203. Beatty GL, Winograd R, Evans RA, Long KB, Luque SL, Lee JW, Clendenin C, Gladney WL, Knoblock DM, Guirnalda PD, Vonderheide RH (2015) Exclusion of T cells from pancreatic carcinomas in mice is regulated by Ly6Clow F4/80+ extratumoral macrophages. Gastroenterology 149:201–210

    Article  CAS  PubMed  Google Scholar 

  204. Ennishi D, Takata K, Béguelin W, Duns G, Mottok A, Farinha P, Bashashati A, Saberi S, Boyle M, Meissner B et al (2019) Molecular and genetic characterization of MHC deficiency identifies EZH2 as therapeutic target for enhancing immune recognition. Cancer Discov 9:546–563

    Article  PubMed  Google Scholar 

  205. de Andrade LF, Ngiow SF, Stannard K, Rusakiewicz S, Kalimutho M, Khanna KK, Tey S-K, Takeda K, Zitvogel L, Martinet L et al (2014) Natural killer cells are essential for the ability of BRAF inhibitors to control BRAFV600E-mutant metastatic melanoma. Can Res 74:7298–7308

    Article  CAS  Google Scholar 

  206. Malladi S, Macalinao DG, Jin X, He L, Basnet H, Zou Y, de Stanchina E, Massagué J (2016) Metastatic latency and immune evasion through autocrine inhibition of WNT. Cell 165:45–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Souza-Fonseca-Guimaraes F, Cursons J, Huntington ND (2019) The Emergence of natural killer cells as a major target in cancer immunotherapy. Trends Immunol 40:142–158

    Article  CAS  PubMed  Google Scholar 

  208. Li Y, Hofmann M, Wang Q, Teng L, Chlewicki LK, Pircher H, Mariuzza RA (2009) Structure of natural killer cell receptor KLRG1 bound to E-cadherin reveals basis for MHC-independent missing self recognition. Immunity 31:35–46

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  209. López-Soto A, Huergo-Zapico L, Galván JA, Rodrigo L, de Herreros AG, Astudillo A, Gonzalez S (2013) Epithelial-mesenchymal transition induces an antitumor immune response mediated by NKG2D receptor. J Immunol 190:4408–4419

    Article  PubMed  CAS  Google Scholar 

  210. Chan IS, Knútsdóttir H, Ramakrishnan G, Padmanaban V, Warrier M, Ramirez JC, Dunworth M, Zhang H, Jaffee EM, Bader JS et al (2020) Cancer cells educate natural killer cells to a metastasis-promoting cell state. J Cell Biol 219:e202001134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Kitamura T, Qian B-Z, Pollard JW (2015) Immune cell promotion of metastasis. Nat Rev Immunol 15:73–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Kong T, Ahn R, Yang K, Zhu X, Fu Z, Morin G, Bramley R, Cliffe NC, Xue Y, Kuasne H et al (2020) CD44 promotes PD-L1 expression and its tumor-intrinsic function in breast and lung cancers. Can Res 80:444–457

    Article  CAS  Google Scholar 

  213. Deuss FA, Gully BS, Rossjohn J, Berry R (2017) Recognition of nectin-2 by the natural killer cell receptor T cell immunoglobulin and ITIM domain (TIGIT). J Biol Chem 292:11413–11422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Yu X, Harden K, Gonzalez L, Francesco M, Chiang E, Irving B, Tom I, Ivelja S, Refino CJ, Clark H et al (2009) The surface protein TIGIT suppresses T cell activation by promoting the generation of mature immunoregulatory dendritic cells. Nat Immunol 10:48–57

    Article  CAS  PubMed  Google Scholar 

  215. Mazel M, Jacot W, Pantel K, Bartkowiak K, Topart D, Cayrefourcq L, Rossille D, Maudelonde T, Fest T, Alix-Panabières C (2015) Frequent expression of PD-L1 on circulating breast cancer cells. Mol Oncol 9:1773–1782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Yue C, Jiang Y, Li P, Wang Y, Xue J, Li N, Li D, Wang R, Dang Y, Hu Z et al (2018) Dynamic change of PD-L1 expression on circulating tumor cells in advanced solid tumor patients undergoing PD-1 blockade therapy. Oncoimmunology 7:e1438111

    Article  PubMed  PubMed Central  Google Scholar 

  217. Baccelli I, Schneeweiss A, Riethdorf S, Stenzinger A, Schillert A, Vogel V, Klein C, Saini M, Bäuerle T, Wallwiener M et al (2013) Identification of a population of blood circulating tumor cells from breast cancer patients that initiates metastasis in a xenograft assay. Nat Biotechnol 31:539–544

    Article  CAS  PubMed  Google Scholar 

  218. Baccelli I, Stenzinger A, Vogel V, Pfitzner BM, Klein C, Wallwiener M, Scharpff M, Saini M, Holland-Letz T, Sinn HP et al (2014) Co-expression of MET and CD47 is a novel prognosticator for survival of luminal breast cancer patients. Oncotarget 5:8147–8160

    Article  PubMed  PubMed Central  Google Scholar 

  219. Steinert G, Schölch S, Niemietz T, Iwata N, García SA, Behrens B, Voigt A, Kloor M, Benner A, Bork U et al (2014) Immune escape and survival mechanisms in circulating tumor cells of colorectal cancer. Can Res 74:1694–1704

    Article  CAS  Google Scholar 

  220. Placke T, Örgel M, Schaller M, Jung G, Rammensee H-G, Kopp H-G, Salih HR (2012) Platelet-derived MHC class I confers a pseudonormal phenotype to cancer cells that subverts the antitumor reactivity of natural killer immune cells. Can Res 72:440–448

    Article  CAS  Google Scholar 

  221. Benham-Pyle BW, Pruitt BL, Nelson WJ (2015) Mechanical strain induces E-cadherin–dependent Yap1 and β-catenin activation to drive cell cycle entry. Science (New York, NY) 348:1024–1027

    Article  CAS  Google Scholar 

  222. Garcia MA, Nelson WJ, Chavez N (2018) Cell-cell junctions organize structural and signaling networks. Cold Spring Harbor Perspect Biol 10:a029181

    Article  CAS  Google Scholar 

  223. Livshits G, Kobielak A, Fuchs E (2012) Governing epidermal homeostasis by coupling cell-cell adhesion to integrin and growth factor signaling, proliferation, and apoptosis. Proc Natl Acad Sci USA 109:4886–4891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Raff MC (1992) Social controls on cell survival and cell death. Nature 356:397–400

    Article  CAS  PubMed  Google Scholar 

  225. Gurdon JB (1988) A community effect in animal development. Nature 336:772–774

    Article  CAS  PubMed  Google Scholar 

  226. Gurdon JB, Tiller E, Roberts J, Kato K (1993) A community effect in muscle development. Curr Biol 3:1–11

    Article  CAS  PubMed  Google Scholar 

  227. Gilmour D, Rembold M, Leptin M (2017) From morphogen to morphogenesis and back. Nature 541:311–320

    Article  CAS  PubMed  Google Scholar 

  228. Deisboeck TS, Couzin ID (2009) Collective behavior in cancer cell populations. BioEssays 31:190–197

    Article  PubMed  Google Scholar 

  229. Hickson J, Diane Yamada S, Berger J, Alverdy J, O’Keefe J, Bassler B, Rinker-Schaeffer C (2009) Societal interactions in ovarian cancer metastasis: a quorum-sensing hypothesis. Clin Exp Metastasis 26:67–76

    Article  PubMed  Google Scholar 

  230. Jolly MK, Kulkarni P, Weninger K, Orban J, Levine H (2018) Phenotypic plasticity, bet-hedging, and androgen independence in prostate cancer: role of non-genetic heterogeneity. Front Oncol. https://doi.org/10.3389/fonc.2018.00050

    Article  PubMed  PubMed Central  Google Scholar 

  231. Wartlick O, Mumcu P, Jülicher F, Gonzalez-Gaitan M (2011) Understanding morphogenetic growth control—lessons from flies. Nat Rev Mol Cell Biol 12:594–604

    Article  CAS  PubMed  Google Scholar 

  232. Maeda T, Sakabe T, Sunaga A, Sakai K, Rivera AL, Keene DR, Sasaki T, Stavnezer E, Iannotti J, Schweitzer R et al (2011) Conversion of mechanical force into TGF-β-mediated biochemical signals. Curr Biol 21:933–941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Costa-Silva B, Aiello NM, Ocean AJ, Singh S, Zhang H, Thakur BK, Becker A, Hoshino A, Mark MT, Molina H et al (2015) Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nat Cell Biol 17:816–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Müller P, Schier AF (2011) Extracellular movement of signaling molecules. Dev Cell 21:145–158

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  235. Neelakantan D, Zhou H, Oliphant MUJ, Zhang X, Simon LM, Henke DM, Shaw CA, Wu M-F, Hilsenbeck SG, White LD et al (2017) EMT cells increase breast cancer metastasis via paracrine GLI activation in neighbouring tumour cells. Nat Commun 8:15773

    Article  PubMed  PubMed Central  Google Scholar 

  236. Martín-Pardillos A, Valls Chiva Á, Bande Vargas G, Hurtado Blanco P, Piñeiro Cid R, Guijarro PJ, Hümmer S, Bejar Serrano E, Rodriguez-Casanova A, Diaz-Lagares Á et al (2019) The role of clonal communication and heterogeneity in breast cancer. BMC Cancer 19:666

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  237. Marusyk A, Tabassum DP, Altrock PM, Almendro V, Michor F, Polyak K (2014) Non-cell-autonomous driving of tumour growth supports sub-clonal heterogeneity. Nature 514:54–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Cleary AS, Leonard TL, Gestl SA, Gunther EJ (2014) Tumour cell heterogeneity maintained by cooperating subclones in Wnt-driven mammary cancers. Nature 508:113–117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Hobor S, Van Emburgh BO, Crowley E, Misale S, Di Nicolantonio F, Bardelli A (2014) TGFα and amphiregulin paracrine network promotes resistance to EGFR blockade in colorectal cancer cells. Clin Cancer Res 20:6429–6438

    Article  CAS  PubMed  Google Scholar 

  240. Toda S, Frankel NW, Lim WA (2019) Engineering cell–cell communication networks: programming multicellular behaviors. Curr Opin Chem Biol 52:31–38

    Article  CAS  PubMed  Google Scholar 

  241. Boareto M, Jolly MK, Goldman A, Pietilä M, Mani SA, Sengupta S, Ben-Jacob E, Levine H, Onuchic JN (2016) Notch-Jagged signalling can give rise to clusters of cells exhibiting a hybrid epithelial/mesenchymal phenotype. J R Soc Interface 13:20151106

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  242. Jackstadt R, van Hooff SR, Leach JD, Cortes-Lavaud X, Lohuis JO, Ridgway RA, Wouters VM, Roper J, Kendall TJ, Roxburgh CS et al (2019) Epithelial NOTCH signaling rewires the tumor microenvironment of colorectal cancer to drive poor-prognosis subtypes and metastasis. Cancer Cell 36:319-336.e317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Siebel C, Lendahl U (2017) Notch signaling in development, tissue homeostasis, and disease. Physiol Rev 97:1235–1294

    Article  CAS  PubMed  Google Scholar 

  244. Meurette O, Mehlen P (2018) Notch signaling in the tumor microenvironment. Cancer Cell 34:536–548

    Article  CAS  PubMed  Google Scholar 

  245. Choi J-H, Park JT, Davidson B, Morin PJ, Shih I-M, Wang T-L (2008) Jagged-1 and Notch3 juxtacrine loop regulates ovarian tumor growth and adhesion. Can Res 68:5716–5723

    Article  CAS  Google Scholar 

  246. Kawai S, Yamazaki M, Shibuya K, Yamazaki M, Fujii E, Nakano K, Suzuki M (2020) Three-dimensional culture models mimic colon cancer heterogeneity induced by different microenvironments. Sci Rep 10:3156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Granit RZ, Masury H, Condiotti R, Fixler Y, Gabai Y, Glikman T, Dalin S, Winter E, Nevo Y, Carmon E et al (2018) Regulation of cellular heterogeneity and rates of symmetric and asymmetric divisions in triple-negative breast cancer. Cell Rep 24:3237–3250

    Article  CAS  PubMed  Google Scholar 

  248. Biktasova AK, Dudimah DF, Uzhachenko RV, Park K, Akhter A, Arasada RR, Evans JV, Novitskiy SV, Tchekneva EE, Carbone DP et al (2015) Multivalent forms of the notch ligand DLL-1 enhance antitumor T-cell immunity in lung cancer and improve efficacy of EGFR-targeted therapy. Can Res 75:4728–4741

    Article  CAS  Google Scholar 

  249. Lin S, Negulescu A, Bulusu S, Gibert B, Delcros J-G, Ducarouge B, Rama N, Gadot N, Treilleux I, Saintigny P et al (2017) Non-canonical NOTCH3 signalling limits tumour angiogenesis. Nat Commun 8:1–12

    Article  CAS  Google Scholar 

  250. Friedl P, Mayor R (2017) Tuning collective cell migration by cell-cell junction regulation. Cold Spring Harb Perspect Biol 9:a029199

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  251. Lu H, Clauser KR, Tam WL, Fröse J, Ye X, Eaton EN, Reinhardt F, Donnenberg VS, Bhargava R, Carr SA et al (2014) A breast cancer stem cell niche supported by juxtacrine signalling from monocytes and macrophages. Nat Cell Biol 16:1105–1117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Pettigrew CA, Asp E, Emerson CP Jr (2014) A new role for Hedgehogs in juxtacrine signaling. Mech Dev 131:137–149

    Article  CAS  PubMed  Google Scholar 

  253. Singh AB, Harris RC (2005) Autocrine, paracrine and juxtacrine signaling by EGFR ligands. Cell Signal 17:1183–1193

    Article  CAS  PubMed  Google Scholar 

  254. Hitomi M, Deleyrolle LP, Mulkearns-Hubert EE, Jarrar A, Li M, Sinyuk M, Otvos B, Brunet S, Flavahan WA, Hubert CG et al (2015) Differential connexin function enhances self-renewal in glioblastoma. Cell Rep 11:1031–1042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Zhang A, Hitomi M, Bar-Shain N, Dalimov Z, Ellis L, Velpula KK, Fraizer GC, Gourdie RG, Lathia JD (2015) Connexin 43 expression is associated with increased malignancy in prostate cancer cell lines and functions to promote migration. Oncotarget 6:11640–11651

    Article  PubMed  PubMed Central  Google Scholar 

  256. Gritsenko PG, Atlasy N, Dieteren CEJ, Navis AC, Venhuizen JH, Veelken C, Schubert D, Acker-Palmer A, Westerman BA, Wurdinger T et al (2020) p120-catenin-dependent collective brain infiltration by glioma cell networks. Nat Cell Biol 22:97–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Osswald M, Jung E, Sahm F, Solecki G, Venkataramani V, Blaes J, Weil S, Horstmann H, Wiestler B, Syed M et al (2015) Brain tumour cells interconnect to a functional and resistant network. Nature 528:93–98

    Article  CAS  PubMed  Google Scholar 

  258. Ellison D, Mugler A, Brennan MD, Lee SH, Huebner RJ, Shamir ER, Woo LA, Kim J, Amar P, Nemenman I et al (2016) Cell–cell communication enhances the capacity of cell ensembles to sense shallow gradients during morphogenesis. Proc Natl Acad Sci 113:E679–E688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Gava F, Rigal L, Mondesert O, Pesce E, Ducommun B, Lobjois V (2018) Gap junctions contribute to anchorage-independent clustering of breast cancer cells. BMC Cancer 18:221

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  260. Aasen T, Mesnil M, Naus CC, Lampe PD, Laird DW (2016) Gap junctions and cancer: communicating for 50 years. Nat Rev Cancer 16:775–788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Shamir ER, Ewald AJ (2014) Three-dimensional organotypic culture: experimental models of mammalian biology and disease. Nat Rev Mol Cell Biol 15:647–664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Simian M, Bissell MJ (2017) Organoids: a historical perspective of thinking in three dimensions. J Cell Biol 216:31–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Jamieson PR, Dekkers JF, Rios AC, Fu NY, Lindeman GJ, Visvader JE (2017) Derivation of a robust mouse mammary organoid system for studying tissue dynamics. Development 144:1065–1071

    CAS  PubMed  Google Scholar 

  264. Padmanaban V, Grasset EM, Neumann NM, Fraser AK, Henriet E, Matsui W, Tran PT, Cheung KJ, Georgess D, Ewald AJ (2020) Organotypic culture assays for murine and human primary and metastatic-site tumors. Nat Protoc 15:2413–2442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Sachs N, de Ligt J, Kopper O, Gogola E, Bounova G, Weeber F, Balgobind AV, Wind K, Gracanin A, Begthel H et al (2018) A living biobank of breast cancer organoids captures disease heterogeneity. Cell 172:373-386.e310

    Article  CAS  PubMed  Google Scholar 

  266. van de Wetering M, Francies HE, Francis JM, Bounova G, Iorio F, Pronk A, van Houdt W, van Gorp J, Taylor-Weiner A, Kester L et al (2015) Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell 161:933–945

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  267. Durdu S, Iskar M, Revenu C, Schieber N, Kunze A, Bork P, Schwab Y, Gilmour D (2014) Luminal signalling links cell communication to tissue architecture during organogenesis. Nature 515:120–124

    Article  CAS  PubMed  Google Scholar 

  268. Dumortier JG, Le Verge-Serandour M, Tortorelli AF, Mielke A, de Plater L, Turlier H, Maître JL (2019) Hydraulic fracturing and active coarsening position the lumen of the mouse blastocyst. Science (New York, NY) 365:465–468

    Article  CAS  Google Scholar 

  269. Ewald AJ, Huebner RJ, Palsdottir H, Lee JK, Perez MJ, Jorgens DM, Tauscher AN, Cheung KJ, Werb Z, Auer M (2012) Mammary collective cell migration involves transient loss of epithelial features and individual cell migration within the epithelium. J Cell Sci 125:2638–2654

    CAS  PubMed  PubMed Central  Google Scholar 

  270. Mazzucchelli S, Piccotti F, Allevi R, Truffi M, Sorrentino L, Russo L, Agozzino M, Signati L, Bonizzi A, Villani L et al (2019) Establishment and morphological characterization of patient-derived organoids from breast cancer. Biol Proc Online 21:12

    Article  CAS  Google Scholar 

  271. Tarin D (1969) Fine structure of murine mammary tumours: the relationship between epithelium and connective tissue in neoplasms induced by various agents. Br J Cancer 23:417–425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y, Pietenpol JA (2011) Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest 121:2750–2767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Masuda H, Baggerly KA, Wang Y, Zhang Y, Gonzalez-Angulo AM, Meric-Bernstam F, Valero V, Lehmann BD, Pietenpol JA, Hortobagyi GN et al (2013) Differential response to neoadjuvant chemotherapy among 7 triple-negative breast cancer molecular subtypes. Clin Cancer Res 19:5533–5540

    Article  CAS  PubMed  Google Scholar 

  274. Wang D-Y, Jiang Z, Ben-David Y, Woodgett JR, Zacksenhaus E (2019) Molecular stratification within triple-negative breast cancer subtypes. Sci Rep 9:19107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Bockhorn M, Jain RK, Munn LL (2007) Active versus passive mechanisms in metastasis: do cancer cells crawl into vessels, or are they pushed? Lancet Oncol 8:444–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Reymond N, d’Água BB, Ridley AJ (2013) Crossing the endothelial barrier during metastasis. Nat Rev Cancer 13:858–870

    Article  CAS  PubMed  Google Scholar 

  277. Roussos ET, Balsamo M, Alford SK, Wyckoff JB, Gligorijevic B, Wang Y, Pozzuto M, Stobezki R, Goswami S, Segall JE et al (2011) Mena invasive (MenaINV) promotes multicellular streaming motility and transendothelial migration in a mouse model of breast cancer. J Cell Sci 124:2120–2131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Chabottaux V, Ricaud S, Host L, Blacher S, Paye A, Thiry M, Garofalakis A, Pestourie C, Gombert K, Bruyere F et al (2009) Membrane-type 4 matrix metalloproteinase (MT4-MMP) induces lung metastasis by alteration of primary breast tumour vascular architecture. J Cell Mol Med 13:4002–4013

    Article  PubMed  PubMed Central  Google Scholar 

  279. Baluk P, Morikawa S, Haskell A, Mancuso M, McDonald DM (2003) Abnormalities of basement membrane on blood vessels and endothelial sprouts in tumors. Am J Pathol 163:1801–1815

    Article  PubMed  PubMed Central  Google Scholar 

  280. Madsen CD, Sahai E (2010) Cancer dissemination–lessons from leukocytes. Dev Cell 19:13–26

    Article  CAS  PubMed  Google Scholar 

  281. Anderberg C, Cunha SI, Zhai Z, Cortez E, Pardali E, Johnson JR, Franco M, Páez-Ribes M, Cordiner R, Fuxe J et al (2013) Deficiency for endoglin in tumor vasculature weakens the endothelial barrier to metastatic dissemination. J Exp Med 210:563–579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  282. Roh-Johnson M, Bravo-Cordero JJ, Patsialou A, Sharma VP, Guo P, Liu H, Hodgson L, Condeelis J (2014) Macrophage contact induces RhoA GTPase signaling to trigger tumor cell intravasation. Oncogene 33:4203–4212

    Article  CAS  PubMed  Google Scholar 

  283. Karagiannis GS, Pastoriza JM, Wang Y, Harney AS, Entenberg D, Pignatelli J, Sharma VP, Xue EA, Cheng E, D’Alfonso TM et al (2017) Neoadjuvant chemotherapy induces breast cancer metastasis through a TMEM-mediated mechanism. Sci Transl Med 9:eaan0026

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  284. Pignatelli J, Bravo-Cordero JJ, Roh-Johnson M, Gandhi SJ, Wang Y, Chen X, Eddy RJ, Xue A, Singer RH, Hodgson L et al (2016) Macrophage-dependent tumor cell transendothelial migration is mediated by Notch1/Mena(INV)-initiated invadopodium formation. Sci Rep 6:37874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. Chang YS, di Tomaso E, McDonald DM, Jones R, Jain RK, Munn LL (2000) Mosaic blood vessels in tumors: frequency of cancer cells in contact with flowing blood. Proc Natl Acad Sci 97:14608–14613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. Silvestri VL, Henriet E, Linville RM, Wong AD, Searson PC, Ewald AJ (2020) A tissue-engineered 3D microvessel model reveals the dynamics of mosaic vessel formation in breast cancer. Cancer Res 1564:2019

    Google Scholar 

  287. Follain G, Herrmann D, Harlepp S, Hyenne V, Osmani N, Warren SC, Timpson P, Goetz JG (2020) Fluids and their mechanics in tumour transit: shaping metastasis. Nat Rev Cancer 20:107–124

    Article  CAS  PubMed  Google Scholar 

  288. Gensbittel V, Kräter M, Harlepp S, Busnelli I, Guck J, Goetz JG (2021) Mechanical adaptability of tumor cells in metastasis. Dev Cell 56:164–179

    Article  CAS  PubMed  Google Scholar 

  289. Follain G, Osmani N, Azevedo AS, Allio G, Mercier L, Karreman MA, Solecki G, Garcia Leòn MJ, Lefebvre O, Fekonja N et al (2018) Hemodynamic forces tune the arrest, adhesion, and extravasation of circulating tumor cells. Dev Cell 45:33-52.e12

    Article  CAS  PubMed  Google Scholar 

  290. Kienast Y, von Baumgarten L, Fuhrmann M, Klinkert WEF, Goldbrunner R, Herms J, Winkler F (2010) Real-time imaging reveals the single steps of brain metastasis formation. Nat Med 16:116–122

    Article  CAS  PubMed  Google Scholar 

  291. Choi JW, Kim JK, Yang YJ, Kim P, Yoon K-H, Yun SH (2015) Urokinase exerts antimetastatic effects by dissociating clusters of circulating tumor cells. Can Res 75:4474–4482

    Article  CAS  Google Scholar 

  292. Patil R, Tan X, Bartosik P, Detappe A, Runnels JM, Ghobrial I, Lin CP, Niedre M (2019) Fluorescence monitoring of rare circulating tumor cell and cluster dissemination in a multiple myeloma xenograft model in vivo. J Biomed Opt 24:1–11

    Article  PubMed  Google Scholar 

  293. Allen TA, Gracieux D, Talib M, Tokarz DA, Hensley MT, Cores J, Vandergriff A, Tang J, de Andrade JB, Dinh PU et al (2017) Angiopellosis as an alternative mechanism of cell extravasation. Stem Cells 35:170–180

    Article  PubMed  Google Scholar 

  294. Mak M, Reinhart-King CA, Erickson D (2013) Elucidating mechanical transition effects of invading cancer cells with a subnucleus-scaled microfluidic serial dimensional modulation device. Lab Chip 13:340–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  295. Wolf K, Te Lindert M, Krause M, Alexander S, Te Riet J, Willis AL, Hoffman RM, Figdor CG, Weiss SJ, Friedl P (2013) Physical limits of cell migration: control by ECM space and nuclear deformation and tuning by proteolysis and traction force. J Cell Biol 201:1069–1084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  296. Friedl P, Locker J, Sahai E, Segall JE (2012) Classifying collective cancer cell invasion. Nat Cell Biol 14:777–783

    Article  PubMed  CAS  Google Scholar 

  297. Malet-Engra G, Yu W, Oldani A, Rey-Barroso J, Gov NS, Scita G, Dupré L (2015) Collective cell motility promotes chemotactic prowess and resistance to chemorepulsion. Curr Biol 25:242–250

    Article  CAS  PubMed  Google Scholar 

  298. Donà E, Barry JD, Valentin G, Quirin C, Khmelinskii A, Kunze A, Durdu S, Newton LR, Fernandez-Minan A, Huber W et al (2013) Directional tissue migration through a self-generated chemokine gradient. Nature 503:285–289

    Article  PubMed  CAS  Google Scholar 

  299. Meng S, Tripathy D, Frenkel EP, Shete S, Naftalis EZ, Huth JF, Beitsch PD, Leitch M, Hoover S, Euhus D et al (2004) Circulating tumor cells in patients with breast cancer dormancy. Clin Cancer Res 10:8152–8162

    Article  PubMed  Google Scholar 

  300. Sasportas LS, Gambhir SS (2014) Imaging circulating tumor cells in freely moving awake small animals using a miniaturized intravital microscope. PLoS ONE 9:e86759

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  301. Chambers AF, Groom AC, MacDonald IC (2002) Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer 2:563–572

    Article  CAS  PubMed  Google Scholar 

  302. Glaves D, Huben RP, Weiss L (1988) Haematogenous dissemination of cells from human renal adenocarcinomas. Br J Cancer 57:32–35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  303. Luzzi KJ, MacDonald IC, Schmidt EE, Kerkvliet N, Morris VL, Chambers AF, Groom AC (1998) Multistep nature of metastatic inefficiency: dormancy of solitary cells after successful extravasation and limited survival of early micrometastases. Am J Pathol 153:865–873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  304. Yoshida K, Fujikawa T, Tanabe A, Sakurai K (1993) Quantitative analysis of distribution and fate of human lung cancer emboli labeled with 125I-5-iodo-2’-deoxyuridine in nude mice. Surg Today 23:979–983

    Article  CAS  PubMed  Google Scholar 

  305. Carlson P, Dasgupta A, Grzelak CA, Kim J, Barrett A, Coleman IM, Shor RE, Goddard ET, Dai J, Schweitzer EM et al (2019) Targeting the perivascular niche sensitizes disseminated tumour cells to chemotherapy. Nat Cell Biol 21:238–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  306. Ghajar CM (2015) Metastasis prevention by targeting the dormant niche. Nat Rev Cancer 15:238–247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  307. Ghajar CM, Peinado H, Mori H, Matei IR, Evason KJ, Brazier H, Almeida D, Koller A, Hajjar KA, Stainier DYR et al (2013) The perivascular niche regulates breast tumour dormancy. Nat Cell Biol 15:807–817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  308. Risson E, Nobre AR, Maguer-Satta V, Aguirre-Ghiso JA (2020) The current paradigm and challenges ahead for the dormancy of disseminated tumor cells. Nature Cancer 1:672–680

    Article  PubMed  PubMed Central  Google Scholar 

  309. Ruppender N, Larson S, Lakely B, Kollath L, Brown L, Coleman I, Coleman R, Nguyen H, Nelson PS, Corey E et al (2015) Cellular adhesion promotes prostate cancer cells escape from dormancy. PLoS ONE 10:e130565s

    Article  CAS  Google Scholar 

  310. Derynck R, Weinberg RA (2019) EMT and cancer: more than meets the eye. Dev Cell 49:313–316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  311. Pastushenko I, Blanpain C (2019) EMT transition states during tumor progression and metastasis. Trends Cell Biol 29:212–226

    Article  CAS  PubMed  Google Scholar 

  312. Yang J, Antin P, Berx G, Blanpain C, Brabletz T, Bronner M, Campbell K, Cano A, Casanova J, Christofori G et al (2020) Guidelines and definitions for research on epithelial–mesenchymal transition. Nat Rev Mol Cell Biol 21:341–352

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  313. Jolly MK, Somarelli JA, Sheth M, Biddle A, Tripathi SC, Armstrong AJ, Hanash SM, Bapat SA, Rangarajan A, Levine H (2019) Hybrid epithelial/mesenchymal phenotypes promote metastasis and therapy resistance across carcinomas. Pharmacol Ther 194:161–184

    Article  CAS  PubMed  Google Scholar 

  314. Williams ED, Gao D, Redfern A, Thompson EW (2019) Controversies around epithelial–mesenchymal plasticity in cancer metastasis. Nat Rev Cancer 19:716–732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  315. McFaline-Figueroa JL, Hill AJ, Qiu X, Jackson D, Shendure J, Trapnell C (2019) A pooled single-cell genetic screen identifies regulatory checkpoints in the continuum of the epithelial-to-mesenchymal transition. Nat Genet 51:1389–1398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  316. Meyer-Schaller N, Cardner M, Diepenbruck M, Saxena M, Tiede S, Lüönd F, Ivanek R, Beerenwinkel N, Christofori G (2019) A hierarchical regulatory landscape during the multiple stages of EMT. Dev Cell 48:539-553.e536

    Article  CAS  PubMed  Google Scholar 

  317. Zeinali M, Lee M, Nadhan A, Mathur A, Hedman C, Lin E, Harouaka R, Wicha MS, Zhao L, Palanisamy N et al (2020) High-throughput label-free isolation of heterogeneous circulating tumor cells and CTC clusters from non-small-cell lung cancer patients. Cancers 12:127

    Article  CAS  PubMed Central  Google Scholar 

  318. Chebouti I, Kasimir-Bauer S, Buderath P, Wimberger P, Hauch S, Kimmig R, Kuhlmann JD (2017) EMT-like circulating tumor cells in ovarian cancer patients are enriched by platinum-based chemotherapy. Oncotarget 8:48820

    Article  PubMed  PubMed Central  Google Scholar 

  319. Puram SV, Tirosh I, Parikh AS, Patel AP, Yizhak K, Gillespie S, Rodman C, Luo CL, Mroz EA, Emerick KS et al (2017) Single-cell transcriptomic analysis of primary and metastatic tumor ecosystems in head and neck cancer. Cell 171:1611-1624.e1624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  320. Aiello NM, Maddipati R, Norgard RJ, Balli D, Li J, Yuan S, Yamazoe T, Black T, Sahmoud A, Furth EE et al (2018) EMT subtype influences epithelial plasticity and mode of cell migration. Dev Cell 45:681-695.e684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  321. George JT, Jolly MK, Xu S, Somarelli JA, Levine H (2017) Survival outcomes in cancer patients predicted by a partial EMT gene expression scoring metric. Can Res 77:6415–6428

    Article  CAS  Google Scholar 

  322. Grosse-Wilde A, Fouquier d’Hérouël A, McIntosh E, Ertaylan G, Skupin A, Kuestner RE, del Sol A, Walters KA, Huang S (2015) Stemness of the hybrid epithelial/mesenchymal state in breast cancer and its association with poor survival. PLoS One 10:e0126522

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  323. Jolly MK, Huang B, Lu M, Mani SA, Levine H, Ben-Jacob E (2014) Towards elucidating the connection between epithelial-mesenchymal transitions and stemness. J R Soc Interface 11:20140962

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  324. Kröger C, Afeyan A, Mraz J, Eaton EN, Reinhardt F, Khodor YL, Thiru P, Bierie B, Ye X, Burge CB et al (2019) Acquisition of a hybrid E/M state is essential for tumorigenicity of basal breast cancer cells. Proc Natl Acad Sci 116:7353–7362

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  325. Simeonov KP, Byrns CN, Clark ML, Norgard RJ, Martin B, Stanger BZ, Shendure J, McKenna A, Lengner CJ (2021) Single-cell lineage tracing of metastatic cancer reveals selection of hybrid EMT states. Cancer Cell. https://doi.org/10.1016/j.ccell.2021.05.005

    Article  PubMed  PubMed Central  Google Scholar 

  326. Kan T, Wang W, Ip PP, Zhou S, Wong AS, Wang X, Yang M (2020) Single-cell EMT-related transcriptional analysis revealed intra-cluster heterogeneity of tumor cell clusters in epithelial ovarian cancer ascites. Oncogene 39:4227–4240

    Article  CAS  PubMed  Google Scholar 

  327. Calbo J, van Montfort E, Proost N, van Drunen E, Beverloo HB, Meuwissen R, Berns A (2011) A functional role for tumor cell heterogeneity in a mouse model of small cell lung cancer. Cancer Cell 19:244–256

    Article  CAS  PubMed  Google Scholar 

  328. Campbell NR, Rao A, Zhang M, Baron M, Heilmann S, Deforet M, Kenny C, Ferretti L, Huang T-H, Garg M, et al (2020) Cell state diversity promotes metastasis through heterotypic cluster formation in melanoma. bioRxiv, 2020.2008.2024.265140

  329. Tsuji T, Ibaragi S, Shima K, Hu MG, Katsurano M, Sasaki A, Hu GF (2008) Epithelial-mesenchymal transition induced by growth suppressor p12CDK2-AP1 promotes tumor cell local invasion but suppresses distant colony growth. Can Res 68:10377–10386

    Article  CAS  Google Scholar 

  330. Lawson DA, Bhakta NR, Kessenbrock K, Prummel KD, Yu Y, Takai K, Zhou A, Eyob H, Balakrishnan S, Wang C-Y et al (2015) Single-cell analysis reveals a stem-cell program in human metastatic breast cancer cells. Nature 526:131–135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  331. Na TY, Schecterson L, Mendonsa AM, Gumbiner BM (2020) The functional activity of E-cadherin controls tumor cell metastasis at multiple steps. Proc Natl Acad Sci USA 117:5931–5937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  332. Allard WJ, Matera J, Miller MC, Repollet M, Connelly MC, Rao C, Tibbe AGJ, Uhr JW, Terstappen LWMM (2004) Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy subjects or patients with nonmalignant diseases. Clin Cancer Res 10:6897–6904

    Article  PubMed  Google Scholar 

  333. Li C-F, Chen J-Y, Ho Y-H, Hsu W-H, Wu L-C, Lan H-Y, Hsu DS-S, Tai S-K, Chang Y-C, Yang M-H (2019) Snail-induced claudin-11 prompts collective migration for tumour progression. Nat Cell Biol 21:251–262

    Article  CAS  PubMed  Google Scholar 

  334. Hu Z, Ding J, Ma Z, Sun R, Seoane JA, Scott Shaffer J, Suarez CJ, Berghoff AS, Cremolini C, Falcone A et al (2019) Quantitative evidence for early metastatic seeding in colorectal cancer. Nat Genet 51:1113–1122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  335. Hüsemann Y, Geigl JB, Schubert F, Musiani P, Meyer M, Burghart E, Forni G, Eils R, Fehm T, Riethmüller G, Klein CA (2008) Systemic spread is an early step in breast cancer. Cancer Cell 13:58–68

    Article  PubMed  CAS  Google Scholar 

  336. Janni W, Vogl FD, Wiedswang G, Synnestvedt M, Fehm T, Jückstock J, Borgen E, Rack B, Braun S, Sommer H et al (2011) Persistence of disseminated tumor cells in the bone marrow of breast cancer patients predicts increased risk for relapse—a European pooled analysis. Clin Cancer Res 17:2967–2976

    Article  PubMed  Google Scholar 

  337. Tang W-F, Wu M, Bao H, Xu Y, Lin J-S, Liang Y, Zhang Y, Chu X-P, Qiu Z-B, Su J et al (2021) Timing and origins of local and distant metastases in lung cancer. J Thoracic Oncol. https://doi.org/10.1016/j.jtho.2021.02.023

    Article  Google Scholar 

  338. Riley RS, June CH, Langer R, Mitchell MJ (2019) Delivery technologies for cancer immunotherapy. Nat Rev Drug Discov 18:175–196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  339. Daher M, Rezvani K (2018) Next generation natural killer cells for cancer immunotherapy: the promise of genetic engineering. Curr Opin Immunol 51:146–153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  340. Shimasaki N, Jain A, Campana D (2020) NK cells for cancer immunotherapy. Nat Rev Drug Discov 19:200–218

    Article  CAS  PubMed  Google Scholar 

  341. Calì B, Ceolin S, Ceriani F, Bortolozzi M, Agnellini AH, Zorzi V, Predonzani A, Bronte V, Molon B, Mammano F (2015) Critical role of gap junction communication, calcium and nitric oxide signaling in bystander responses to focal photodynamic injury. Oncotarget 6:10161–10174

    Article  PubMed  PubMed Central  Google Scholar 

  342. Fick J, Barker FG 2nd, Dazin P, Westphale EM, Beyer EC, Israel MA (1995) The extent of heterocellular communication mediated by gap junctions is predictive of bystander tumor cytotoxicity in vitro. Proc Natl Acad Sci USA 92:11071–11075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The Department of Defense Breast Cancer Research Program (BCRP; W81XWH-18–1–0098), the NIH/NCI (R37CA234488), Susan G. Komen Foundation (Career Catalyst Research Grant), and the Burroughs Wellcome Fund Career Award for Medical Scientists.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin Cheung.

Ethics declarations

Conflict of interest

EDW and KJC are inventors on a pending patent application related to collective metastasis by tumor cell clusters.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wrenn, E., Huang, Y. & Cheung, K. Collective metastasis: coordinating the multicellular voyage. Clin Exp Metastasis 38, 373–399 (2021). https://doi.org/10.1007/s10585-021-10111-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-021-10111-0

Keywords

Navigation