Skip to main content
Log in

Cyclohexane Produces Behavioral Deficits Associated with Astrogliosis and Microglial Reactivity in the Adult Hippocampus Mouse Brain

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Cyclohexane is a volatile substance that has been utilized as a safe substitute of several organic solvents in diverse industrial processes, such as adhesives, paints, paint thinners, fingernail polish, lacquers, and rubber industry. A number of these commercial products are ordinarily used as inhaled drugs. However, it is not well known whether cyclohexane has noxious effects in the central nervous system. The aim of this study was to analyze the effects of cyclohexane inhalation on motor behavior, spatial memory, and reactive gliosis in the hippocampus of adult mice. We used a model that mimics recreational drug use in male Balb/C mice (P60), divided into two groups: controls and the cyclohexane group (exposed to 9,000 ppm of cyclohexane for 30 days). Both groups were then evaluated with a functional observational battery (FOB) and the Morris water maze (MWM). Furthermore, the relative expression of AP endonuclease 1 (APE1), and the number of astrocytes (GFAP+ cells) and microglia (Iba1+ cells) were quantified in the hippocampal CA1 and CA3 areas. Our findings indicated that cyclohexane produced severe functional deficits during a recreational exposure as assessed by the FOB. The MWM did not show statistically significant changes in the acquisition and retention of spatial memory. Remarkably, a significant increase in the number of astrocytes and microglia cells, as well as in the cytoplasmic processes of these cells were observed in the hippocampal CA1 and CA3 areas of cyclohexane-exposed mice. This cellular response was associated with an increase in the expression of APE1 in the same brain regions. In summary, cyclohexane exposure produces functional deficits that are associated with an important increase in the APE1 expression as well as the number of astrocytes and microglia cells and their cytoplasmic complexity in the CA1 and CA3 regions of the adult hippocampus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anderson MA, Ao Y, Sofroniew MV (2014) Heterogeneity of reactive astrocytes. Neurosci Lett 565:23–29

    Article  CAS  PubMed  Google Scholar 

  • Bale AS, Tu Y, Carpenter-Hyland EP, Chandler LJ, Woodward JJ (2005) Alterations in glutamatergic and gabaergic ion channel activity in hippocampal neurons following exposure to the abused inhalant toluene. Neuroscience 130(1):197–206

    Article  CAS  PubMed  Google Scholar 

  • Baydas G, Ozveren F, Akdemir I, Tuzcu M, Yasar A (2005) Learning and memory deficits in rats induced by chronic thinner exposure are reversed by melatonin. J Pineal Res 39(1):50–56

    Article  CAS  PubMed  Google Scholar 

  • Bespalov A, Sukhotina I, Medvedev I, Malyshkin A, Belozertseva I, Balster R, Zvartau E (2003) Facilitation of electrical brain self-stimulation behavior by abused solvents. Pharmacol Biochem Behav 75(1):199–208

    Article  CAS  PubMed  Google Scholar 

  • Boucard A, Betat AM, Forster R, Simonnard A, Froget G (2010) Evaluation of neurotoxicity potential in rats: the functional observational battery. Current Protoc Pharmacol/Editorial Board, Enna SJ (editor-in-chief) et al Chapter 10:Unit 10 12

  • Bowen SE, Balster RL (1998) A direct comparison of inhalant effects on locomotor activity and schedule-controlled behavior in mice. Exp Clin Psychopharmacol 6(3):235–247

    Article  CAS  PubMed  Google Scholar 

  • Bowen SE, Batis JC, Paez-Martinez N, Cruz SL (2006) The last decade of solvent research in animal models of abuse: mechanistic and behavioral studies. Neurotoxicol Teratol 28(6):636–647

    Article  CAS  PubMed  Google Scholar 

  • Burda JE, Sofroniew MV (2014) Reactive gliosis and the multicellular response to CNS damage and disease. Neuron 81(2):229–248

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Choi JH, Lee CH, Hwang IK, Won MH, Seong JK, Yoon YS, Lee HS, Lee IS (2007) Age-related changes in ionized calcium-binding adapter molecule 1 immunoreactivity and protein level in the gerbil hippocampal CA1 region. J Vet Med Sci 69(11):1131–1136

    Article  CAS  PubMed  Google Scholar 

  • Christoph GR, Kelly DP, Krivanek N (2000) Acute inhalation exposure to cyclohexane and schedule-controlled operant performance in rats: comparison to d-amphetamine and chlorpromazine. Drug Chem Toxicol 23(4):539–553

    Article  CAS  PubMed  Google Scholar 

  • Cruz SL (2011) The latest evidence in the neuroscience of solvent misuse: an article written for service providers. Subst Use Misuse 46(Suppl 1):62–67

    Article  PubMed  Google Scholar 

  • Curtis CD, Thorngren DL, Nardulli AM (2010) Immunohistochemical analysis of oxidative stress and DNA repair proteins in normal mammary and breast cancer tissues. BMC Cancer 10:9. doi:10.1186/1471-2407-10-9

    Article  PubMed Central  PubMed  Google Scholar 

  • Dick FD (2006) Solvent neurotoxicity. Occup Environ Med 63(3):221–226, 179. doi:10.1136/oem.2005.022400

  • Evans EB, Balster RL (1991) CNS depressant effects of volatile organic solvents. Neurosci Biobehav Rev 15(2):233–241

    Article  CAS  PubMed  Google Scholar 

  • Fifel K, Bennis M, Ba-M’hamed S (2014) Effects of acute and chronic inhalation of paint thinner in mice: behavioral and immunohistochemical study. Metab Brain Dis 29(2):471–482

    Article  CAS  PubMed  Google Scholar 

  • Flanagan RJ, Ives RJ (1994) Volatile substance abuse. Bull Narc 46(2):49–78

    CAS  PubMed  Google Scholar 

  • Fukui K, Utsumi H, Tamada Y, Nakajima T, Ibata Y (1996) Selective increase in astrocytic elements in the rat dentate gyrus after chronic toluene exposure studied by GFAP immunocytochemistry and electron microscopy. Neurosci Lett 203(2):85–88

    Article  CAS  PubMed  Google Scholar 

  • Gmaz JM, Yang L, Ahrari A, McKay BE (2012) Binge inhalation of toluene vapor produces dissociable motor and cognitive dysfunction in water maze tasks. Behav Pharmacol 23(7):669–677

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Castaneda RE, Castellanos-Alvarado EA, Flores-Marquez MR, Gonzalez-Perez O, Luquin S, Garcia-Estrada J, Ramos-Remus C (2007) Deflazacort induced stronger immunosuppression than expected. Clin Rheumatol 26(6):935–940

    Article  PubMed  Google Scholar 

  • Gonzalez-Perez O, Ramos-Remus C, Garcia-Estrada J, Luquin S (2001) Prednisone induces anxiety and glial cerebral changes in rats. J Rheumatol 28(11):2529–2534

    CAS  PubMed  Google Scholar 

  • Gonzalez-Perez O, Gutierrez-Fernandez F, Lopez-Virgen V, Collas-Aguilar J, Quinones-Hinojosa A, Garcia-Verdugo JM (2012) Immunological regulation of neurogenic niches in the adult brain. Neuroscience 226:270–281

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gotohda T, Tokunaga I, Kubo S, Morita K, Kitamura O, Eguchi A (2000) Effect of toluene inhalation on astrocytes and neurotrophic factor in rat brain. Forensic Sci Int 113(1–3):233–238

    Article  CAS  PubMed  Google Scholar 

  • Gros L, Ishchenko AA, Ide H, Elder RH, Saparbaev MK (2004) The major human AP endonuclease (Ape1) is involved in the nucleotide incision repair pathway. Nucleic Acids Res 32(1):73–81. doi:10.1093/nar/gkh165

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gulinello M, Gertner M, Mendoza G, Schoenfeld BP, Oddo S, LaFerla F, Choi CH, McBride SM, Faber DS (2009) Validation of a 2-day water maze protocol in mice. Behav Brain Res 196(2):220–227. doi:10.1016/j.bbr.2008.09.002

    Article  PubMed Central  PubMed  Google Scholar 

  • Haas CN, Rose JB, Gerba CP. (1999). Quantitative microbial risk assessment. Wiley, New York.

  • Hissink AM, Kulig BM, Kruse J, Freidig AP, Verwei M, Muijser H, Lammers JH, McKee RH, Owen DE, Sweeney LM, Salmon F (2009) Physiologically based pharmacokinetic modeling of cyclohexane as a tool for integrating animal and human test data. Int J Toxicol 28(6):498–509

    Article  CAS  PubMed  Google Scholar 

  • Kettenmann H, Hanisch UK, Noda M, Verkhratsky A (2011) Physiology of microglia. Physiol Rev 91(2):461–553

    Article  CAS  PubMed  Google Scholar 

  • Korbo L, Ladefoged O, Lam HR, Ostergaard G, West MJ, Arlien-Soborg P (1996) Neuronal loss in hippocampus in rats exposed to toluene. Neurotoxicology 17(2):359–366

    CAS  PubMed  Google Scholar 

  • Kreckmann KH, Baldwin JK, Roberts LG, Staab RJ, Kelly DP, Saik JE (2000) Inhalation developmental toxicity and reproduction studies with cyclohexane. Drug Chem Toxicol 23(4):555–573

    Article  CAS  PubMed  Google Scholar 

  • Kurtzman TL, Otsuka KN, Wahl RA (2001) Inhalant abuse by adolescents. J Adolesc Health 28(3):170–180

    Article  CAS  PubMed  Google Scholar 

  • Lammers JH, Emmen HH, Muijser H, Hoogendijk EM, McKee RH, Owen DE, Kulig BM (2009) Neurobehavioral effects of cyclohexane in rat and human. Int J Toxicol 28(6):488–497

    Article  CAS  PubMed  Google Scholar 

  • Lubman DI, Yucel M, Lawrence AJ (2008) Inhalant abuse among adolescents: neurobiological considerations. Br J Pharmacol 154(2):316–326

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Malley LA, Bamberger JR, Stadler JC, Elliott GS, Hansen JF, Chiu T, Grabowski JS, Pavkov KL (2000) Subchronic toxicity of cyclohexane in rats and mice by inhalation exposure. Drug Chem Toxicol 23(4):513–537

    Article  CAS  PubMed  Google Scholar 

  • Morris R (1981) Spatial localisation does not depend on the presence of local cues. Learn Motiv 12:239–260

    Article  Google Scholar 

  • Morris R (1984) Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 11(1):47–60

    Article  CAS  PubMed  Google Scholar 

  • Moser VC (1990) Approaches for assessing the validity of a functional observational battery. Neurotoxicol Teratol 12(5):483–488

    Article  CAS  PubMed  Google Scholar 

  • Nowicka D, Rogozinska K, Aleksy M, Witte OW, Skangiel-Kramska J (2008) Spatiotemporal dynamics of astroglial and microglial responses after photothrombotic stroke in the rat brain. Acta Neurobiol Exp 68(2):155–168

    Google Scholar 

  • O’Callaghan JP, Sriram K (2005) Glial fibrillary acidic protein and related glial proteins as biomarkers of neurotoxicity. Expert Opin Drug Saf 4(3):433–442

    Article  PubMed  Google Scholar 

  • Paxinos G, Franklin K (2001) The mouse brain in stereotaxic coordinates, 2nd edn. Academic Press, San Diego

    Google Scholar 

  • Perbellini L, Brugnone F, Silvestri R, Gaffuri E (1981) Measurement of the urinary metabolites of N-hexane, cyclohexane and their isomers by gas chromatography. Int Arch Occup Environ Health 48(1):99–106

    Article  CAS  PubMed  Google Scholar 

  • Ramos-Remus C, Gonzalez-Castaneda RE, Gonzalez-Perez O, Luquin S, Garcia-Estrada J (2002) Prednisone induces cognitive dysfunction, neuronal degeneration, and reactive gliosis in rats. J Investig Med 50(6):458–464

    Article  CAS  PubMed  Google Scholar 

  • Ransom BR, Ransom CB (2012) Astrocytes: multitalented stars of the central nervous system. Methods Mol Biology (Clifton NJ) 814:3–7

    Article  CAS  Google Scholar 

  • Ridenour TA, Bray BC, Cottler LB (2007) Reliability of use, abuse, and dependence of four types of inhalants in adolescents and young adults. Drug Alcohol Depend 91(1):40–49

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rosengren LE, Aurell A, Kjellstrand P, Haglid KG (1985) Astrogliosis in the cerebral cortex of gerbils after long-term exposure to 1,1,1-trichloroethane. Scand J Work Environ Health 11(6):447–455

    Article  CAS  PubMed  Google Scholar 

  • Rosengren LE, Kjellstrand P, Aurell A, Haglid KG (1986) Irreversible effects of dichloromethane on the brain after long term exposure: a quantitative study of DNA and the glial cell marker proteins S-100 and GFA. Br J Ind Med 43(5):291–299

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sabbath EL, Gutierrez LA, Okechukwu CA, Singh-Manoux A, Amieva H, Goldberg M, Zins M, Berr C (2014) Time may not fully attenuate solvent-associated cognitive deficits in highly exposed workers. Neurology 82(19):1716–1723

    Article  PubMed Central  PubMed  Google Scholar 

  • Sikkema J, de Bont JA, Poolman B (1994) Interactions of cyclic hydrocarbons with biological membranes. J Biol Chem 269(11):8022–8028

    CAS  PubMed  Google Scholar 

  • Subramanian K, Mohideen SS, Suzumura A, Asai N, Murakumo Y, Takahashi M, Jin S, Zhang L, Huang Z, Ichihara S, Kitoh J, Ichihara G (2012) Exposure to 1-bromopropane induces microglial changes and oxidative stress in the rat cerebellum. Toxicology 302(1):18–24. doi:10.1016/j.tox.2012.07.006

    Article  CAS  PubMed  Google Scholar 

  • van Thriel C, Kiesswetter E, Schaper M, Blaszkewicz M, Golka K, Juran S, Kleinbeck S, Seeber A (2007) From neurotoxic to chemosensory effects: new insights on acute solvent neurotoxicity exemplified by acute effects of 2-ethylhexanol. Neurotoxicology 28(2):347–355. doi:10.1016/j.neuro.2006.03.008

    Article  PubMed  Google Scholar 

  • Visser I, Wekking EM, de Boer AG, de Joode EA, van Hout MS, van Dorsselaer S, Ruhe HG, Huijser J, van der Laan G, van Dijk FJ, Schene AH (2011) Prevalence of psychiatric disorders in patients with chronic solvent induced encephalopathy (CSE). Neurotoxicology 32(6):916–922

    Article  CAS  PubMed  Google Scholar 

  • von Euler G, Ogren SO, Li XM, Fuxe K, Gustafsson JA (1993) Persistent effects of subchronic toluene exposure on spatial learning and memory, dopamine-mediated locomotor activity and dopamine D2 agonist binding in the rat. Toxicology 77(3):223–232

    Article  Google Scholar 

  • Vorhees CV, Williams MT (2006) Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat Protoc 1(2):848–858. doi:10.1038/nprot.2006.116

    Article  PubMed Central  PubMed  Google Scholar 

  • Warren DA, Reigle TG, Muralidhara S, Dallas CE (1998) Schedule-controlled operant behavior of rats during 1,1,1-trichloroethane inhalation: relationship to blood and brain solvent concentrations. Neurotoxicol Teratol 20(2):143–153

    Article  CAS  PubMed  Google Scholar 

  • Zhang D, Hu X, Qian L, O’Callaghan JP, Hong JS (2010) Astrogliosis in CNS pathologies: is there a role for microglia? Mol Neurobiol 41(2–3):232–241

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from ConsejoNacional de Ciencia y Tecnologia (CONACyT; INFR2014-224359)andPrograma de Mejoramiento al Profesorado (PROMEP; 103.5/12/4857).

Conflict of interest

The authors have nothing to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oscar Gonzalez-Perez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Campos-Ordonez, T., Zarate-Lopez, D., Galvez-Contreras, A.Y. et al. Cyclohexane Produces Behavioral Deficits Associated with Astrogliosis and Microglial Reactivity in the Adult Hippocampus Mouse Brain. Cell Mol Neurobiol 35, 503–512 (2015). https://doi.org/10.1007/s10571-014-0146-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-014-0146-6

Keywords

Navigation