Skip to main content
Log in

Oxidation and sulfonation of cellulosics

  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Bleached hardwood (HW) kraft pulp and derived nanocellulosic structures were modified by a periodate oxidation followed by treatment with sodium bisulfite to yield the corresponding C2/3 sulfonates. The impact of this oxidative–reductive protocol on the chemical and physical properties of cellulose was evaluated by determining physical dimensions, functional groups, and their water absorbency properties. It was found that the water absorbency of cellulosic material can be enhanced by 8.0–199.0% with this oxidation/sulfonation protocol. Distinct differences were observed between sulfonated pulp fibers and nanocellulosic structures, with the latter exhibiting relatively higher water retention values (WRV).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abdelmouleh M, Boufi S, Ben Salah A, Belgacem MN, Gandini A (2002) Interaction of silane coupling agents with cellulose. Langmuir 18(8):3203–3208

    Article  CAS  Google Scholar 

  • Calvini P, Conio G, Princi E, Vicini S, Pedemonte E (2006) Viscometric determination of dialdehyde content in periodate oxycellulose. Part II. Topochemistry of oxidation. Cellulose 13(5):571–579

    Article  CAS  Google Scholar 

  • Eichhorn SJ, Baillie CA, Zafeiropoulos N, Mwaikambo LY, Ansell MP, Dufresne A, Entwistle KM, Herrera-Franco PJ, Escamilla GC, Groom L, Hughes M, Hill C, Rials TG, Wild PM (2001) Current international research into cellulosic fibers and composites. J Mater Sci 36(9):2107–2131

    Article  CAS  Google Scholar 

  • Gurdag G, Guclu G, Ozgumus S (2001) Graft copolymerization of acrylic acid onto cellulose: effects of pretreatments and crosslinking agent. J Appl Polym Sci 80(12):2267–2272

    Article  CAS  Google Scholar 

  • Habibi Y, Chanzy H, Vignon MR (2006) TEMPO-mediated surface oxidation of cellulose whiskers. Cellulose 13(6):679–687

    Article  CAS  Google Scholar 

  • Huda MS, Drzal LT, Misra M, Mohanty AK (2006) Wood-fiber-reinforced poly(lactic acid) composites: evaluation of the physicomechanical and morphological properties. J Appl Polym Sci 102(5):4856–4869

    Article  CAS  Google Scholar 

  • Kim U, Kuga S (2002) Functionalization of cellulose by periodate oxidation. Cell Commun 9(2):69–75

    CAS  Google Scholar 

  • Kim U, Shigenori K (1999) Modification of cellulose column packing by periodate oxidation. Chromatography 20(4):322–323

    CAS  Google Scholar 

  • Kim U, Kuga S, Wada M, Okano T, Kondo T (2000) Periodate oxidation of crystalline. Cellulose 1(3):488–492

    CAS  Google Scholar 

  • Kim U, Wada M, Kuga S (2004) Solubilization of dialdehyde cellulose by hot water. Carbohydr Polym 56(1):7–10

    Article  CAS  Google Scholar 

  • Klemm D, Heublein B, Fink H-P, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44(22):3358–3393

    Article  CAS  Google Scholar 

  • Kvien I, Tanem BS, Oksman K (2005) Characterization of cellulose whiskers and their nanocomposites by atomic force and electron microscopy. Biomacromolecules 6(6):3160–3165

    Article  CAS  Google Scholar 

  • Lloyd JA, Horne CW (1993) The determination of fiber charge and acidic groups of radiata pine pulps. Nord Pulp Paper Res J 8:48–52

    Article  CAS  Google Scholar 

  • Margutti S, Vicini S, Proietti N, Capitani D, Conio G, Pedemonte E, Segre AL (2002) Physical–chemical characterization of acrylic polymers grafted on cellulose. Polymer 43(23):6183–6194

    Article  CAS  Google Scholar 

  • Nelson K, Deng Y (2006) The shape dependence of core-shell and hollow titania nanoparticles on coating thickness during layer-by-layer and sol–gel synthesis. Nanotechnology 17:3219–3225

    Article  CAS  Google Scholar 

  • Pu Y, Zhang J, Elder T, Deng Y, Gatenholm P, Ragauskas AJ (2007) Investigation into nanocellulosics versus acacia reinforced acrylic films. Compos Part B-Eng 38(3):360–366

    Article  CAS  Google Scholar 

  • Pu Y, Ziemer C, Ragauskas AJ (2006) CP/MAS 13C NMR analysis of cellulase treated bleached softwood kraft pulp. Carbohyd Res 341(5):591–597

    Article  CAS  Google Scholar 

  • Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ Jr, Hallett JP, Leak DJ, Liotta CL, Mielenz JR, Murphy R, Templer R, Tschaplinski T (2006) The path forward for biofuels and biomaterials. Science 311(5760):484–489

    Article  CAS  Google Scholar 

  • Roman M, Winter WT (2006) Cellulose nanocrystals for thermoplastic reinforcement: effect of filler surface chemistry on composite properties. ACS Sympos Ser 938:99–113

    Article  CAS  Google Scholar 

  • Röhrling J, Potthast A, Rosenau T, Lange T, Borgards A, Sixta H, Kosma P (2002) A novel method for the determination of carbonyl groups in cellulosics by fluorescence labeling. 2. Validation and applications. Biomacromolecules 3(5):969–975

    Article  CAS  Google Scholar 

  • Saito T, Isogai A (2005) A novel method to improve wet strength of paper. Tappi J 4(3):3–8

    CAS  Google Scholar 

  • Saito T, Okita Y, Nge TT, Sugiyama J, Isogai A (2006) TEMPO-mediated oxidation of native cellulose: microscopic analysis of fibrous fractions in the oxidized products. Carbohydr Polym 65(4):435–440

    Article  CAS  Google Scholar 

  • Saito T, Shibata I, Isogai A, Suguri N, Sumikawa N (2005) Distribution of carboxylate groups introduced into cotton linters by the TEMPO-mediated oxidation. Carbohydr Polym 61(4):414–419

    Article  CAS  Google Scholar 

  • Samir MASA, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6(2):612–626

    Article  CAS  Google Scholar 

  • Shet RT, Wallajapet PRR (1997) Manufacture of sulfonated cellulose with improved absorbent properties. US 5703225

  • Toriz G, Gatenholm P, Seiler BD, Tindall D (2005) Cellulose fiber-reinforced cellulose esters: biocomposite for the future. Nat Fibers Biopolym Biocompos 617–638

  • Varma AJ, Chavan VB, Rajimohanan PR, Ganapathy S (1997) Some observations on the high-resolution solid-state CP-MAS 13C NMR spectra of periodate-oxidised cellulose. Polym Degrad Stab 58:257–260

    Article  CAS  Google Scholar 

  • Wack H, Ulbricht M (2007) Method and model for the analysis of gel-blocking effects during the swelling of polymeric hydrogels. Ind Eng Chem Res 46(1):359–364

    Article  CAS  Google Scholar 

  • Waring MJ, Parsons D (2001) Physico-chemical characterization of carboxymethylated spun cellulose fibers. Biomaterials 22(9):903–912

    Article  CAS  Google Scholar 

  • Zhang J, Elder T, Pu Y, Ragauskas AJ (2007) Facile synthesis of spherical nanocellulose. Carbohyd Polym 69(3):607–611

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to KCC and NSF (EEC-0332554) for support of these studies. We also want to express our gratitude to K. Nelson and Dr. D.H. Kim from IPST@GA Tech for their valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur J. Ragauskas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, J., Jiang, N., Dang, Z. et al. Oxidation and sulfonation of cellulosics. Cellulose 15, 489–496 (2008). https://doi.org/10.1007/s10570-007-9193-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-007-9193-1

Keywords

Navigation