Skip to main content

Advertisement

Log in

Angiogenesis is a Link Between Atherosclerosis and Tumorigenesis: Role of LOX-1

  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Angiogenesis is defined as the formation of new blood vessels sprouting from pre-existing vessels. It plays an important role not only in physiological situations such as embryonic vascular development and wound healing, but also in pathological conditions including atherogenesis and evolution and spread of certain tumors. Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1), a receptor for oxidized low density lipoprotein (ox-LDL), is mainly expressed in endothelial cells. It has diverse physiological functions and it could be a link between atherogenesis and tumorigenesis. The risk factors for atherosclerosis like hypertension, diabetes mellitus and hyperlipidemia are associated with LOX-1. Dyslipidemia and obesity are also being recognized as risk factor for certain tumors. LOX-1 is also found to be important for maintaining the transformed state in developmentally diverse cancer cell lines and for tumor growth. There is emerging evidence that LOX-1 plays an important role in the angiogenesis process. In this review, we outline the roles of angiogenesis in atherogenesis and tumorigenesis, and describe the role of LOX-1 as a potential molecular target for blocking angiogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Risau W. Mechanisms of angiogenesis. Nature. 1997;386:671–4.

    Article  PubMed  CAS  Google Scholar 

  2. Doyle B, Caplice N. Plaque neovascularization and antiangiogenic therapy for atherosclerosis. J Am Coll Cardiol. 2007;49:2073–80.

    Article  PubMed  Google Scholar 

  3. Wu FT, Stefanini MO, Mac Gabhann F, Kontos CD, Annex BH, Popel AS. A systems biology perspective on sVEGFR1: its biological function, pathogenic role and therapeutic use. J Cell Mol Med. 2010;14:528–52.

    PubMed  CAS  Google Scholar 

  4. Slevin M, Kumar P, Wang Q, Kumar S, Gaffney J, Grau-Olivares M, et al. New VEGF antagonists as possible therapeutic agents in vascular disease. Expert Opin Investig Drugs. 2008;17:1301–14.

    Article  PubMed  CAS  Google Scholar 

  5. Shibuya M. Vascular endothelial growth factor-dependent and -independent regulation of angiogenesis. BMB Rep. 2008;41:278–86.

    Article  PubMed  CAS  Google Scholar 

  6. Yancopoulos GD, Davis S, Gale NW, Rudge JS, Wiegand SJ, Holash J. Vascular-specific growth factors and blood vessel formation. Nature. 2000;407:242–8.

    Article  PubMed  CAS  Google Scholar 

  7. Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell. 1996;86:353–64.

    Article  PubMed  CAS  Google Scholar 

  8. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100:57–70.

    Article  PubMed  CAS  Google Scholar 

  9. Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. Nature. 2008;454:436–44.

    Article  PubMed  CAS  Google Scholar 

  10. Larsson SC, Mantzoros CS, Wolk A. Diabetes mellitus and risk of breast cancer: a meta-analysis. Int J Cancer. 2007;121:856–62.

    Article  PubMed  CAS  Google Scholar 

  11. Hsu IR, Kim SP, Kabir M, Bergman RN. Metabolic syndrome, hyperinsulinemia, and cancer. Am J Clin Nutr. 2007;86:867–71.

    Google Scholar 

  12. Kuge Y, Kume N, Ishino S, Takai N, Ogawa Y, Mukai T, et al. Prominent lectin-like oxidized low density lipoprotein (LDL) receptor-1 (LOX-1) expression in atherosclerotic lesions is associated with tissue factor expression and apoptosis in hypercholesterolemic rabbits. Biol Pharm Bull. 2008;31:1475–82.

    Article  PubMed  CAS  Google Scholar 

  13. Mehta JL, Sanada N, Hu CP, Chen J, Dandapat A, Sugawara F, et al. Deletion of LOX-1 reduces atherogenesis in LDLR knockout mice fed high cholesterol diet. Circ Res. 2007;100:1634–42.

    Article  PubMed  CAS  Google Scholar 

  14. Hirsch HA, Iliopoulos D, Joshi A, Zhang Y, Jaeger SA, Bulyk M, et al. A transcriptional signature and common gene networks link cancer with lipid metabolism and diverse human diseases. Cancer Cell. 2010;17:348–61.

    Article  PubMed  CAS  Google Scholar 

  15. Hu C, Dandapat A, Mehta JL. Angiotensin II induces capillary formation from endothelial cells via the LOX-1 dependent redox-sensitive pathway. Hypertension. 2007;50:952–7.

    Article  PubMed  CAS  Google Scholar 

  16. Carmeliet P. Mechanisms of angiogenesis and arteriogenesis. Nature Med. 2000;6:389–95.

    Article  PubMed  CAS  Google Scholar 

  17. Friesel RE, Maciag T. Molecular mechanism of angiogenesis: Fibroblast growth factor signal transducing. FASEB J. 1995;9:919–25.

    PubMed  CAS  Google Scholar 

  18. Folkman J, Klagsbrun M. Angiogenic factors. Science. 1987;235:442–7.

    Article  PubMed  CAS  Google Scholar 

  19. Ferrara N, Houk K, Jackman L, Leung DW. Molecular and biological properties of vascular endothelial growth factor family of proteins. Endocr Rev. 1992;13:18–32.

    PubMed  CAS  Google Scholar 

  20. Carmeliet P, Collen D. Molecular analysis of blood vessel formation and disease. Am J Physiol. 1997;273:H2091–104.

    PubMed  CAS  Google Scholar 

  21. Neufeld G, Cohen T, Gengrinovitch S, Poltorak Z. Vascular endothelial growth factor (VEGF) and its receptors. FASEB J. 1999;13:9–22.

    PubMed  CAS  Google Scholar 

  22. Appelmann I, Liersch R, Kessler T, Mesters RM, Berdel WE. Angiogenesis inhibition in cancer therapy: platelet-derived growth factor (PDGF) and vascular endothelial growth factor (VEGF) and their receptors: biological functions and role in malignancy. Recent Results Cancer Res. 2010;180:51–81.

    Article  PubMed  CAS  Google Scholar 

  23. Hellberg C, Ostman A, Heldin CH. PDGF and vessel maturation. Recent Results Cancer Res. 2010;180:103–14.

    Article  PubMed  CAS  Google Scholar 

  24. Davis S, Aldrich TH, Jones PF, Acheson A, Compton DL, Jain V, et al. Isolation of angiopoietin-1, a ligand for the TIE2 receptor, by secretion-trap expression cloning. Cell. 1996;87:1161–9.

    Article  PubMed  CAS  Google Scholar 

  25. Maisonpierre PC, Suri C, Jones PF, Bartunkova S, Wiegand SJ, Radziejewski C, et al. Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science. 1997;277:55–60.

    Article  PubMed  CAS  Google Scholar 

  26. Koblizek TI, Weiss C, Yancopoulos GD, Deutsch U, Risau W. Angiopoietin-1 induces sprouting angiogenesis in vitro. Curr Biol. 1998;8:529–32.

    Article  PubMed  CAS  Google Scholar 

  27. Fulton D, Gratton JP, McCabe TJ, Fontana J, Fujio Y, Walsh K, et al. Regulation of endothelium-derived nitric oxide production by the protein kinase Akt. Nature. 1999;399:597–601.

    Article  PubMed  CAS  Google Scholar 

  28. Kawasaki K, Smith Jr RS, Hsieh CM, Sun J, Chao J, Liao JK. Activation of the phosphatidylinositol 3-kinase/protein kinase Akt pathway mediates nitric oxide-induced endothelial cell migration and angiogenesis. Mol Cell Biol. 2003;23:5726–37.

    Article  PubMed  CAS  Google Scholar 

  29. Fryer BH, Field J. Rho, Rac, Pak and angiogenesis: old roles and newly identified responsibilities in endothelial cells. Cancer Lett. 2005;229:13–23.

    Article  PubMed  CAS  Google Scholar 

  30. Yu EM, Jain M, Aragon-Ching JB. Angiogenesis inhibitors in prostate cancer therapy. Discov Med. 2010;10:521–30.

    PubMed  Google Scholar 

  31. Kerbel R, Folkman J. Clinical translation of angiogenesis inhibitors. Nat Rev Cancer. 2002;2:727–39.

    Article  PubMed  CAS  Google Scholar 

  32. Sieveking DP, Chow RW, Ng MK. Androgens, angiogenesis and cardiovascular regeneration. Curr Opin Endocrinol Diabetes Obes. 2010;17:277–83.

    Article  PubMed  CAS  Google Scholar 

  33. Kastrup J. Gene therapy and angiogenesis in patients with coronary artery disease. Expert Rev Cardiovasc Ther. 2010;8:1127–38.

    Article  PubMed  CAS  Google Scholar 

  34. Seevinck PR, Deddens LH, Dijkhuizen RM. Magnetic resonance imaging of brain angiogenesis after stroke. Angiogenesis. 2010;13:101–11.

    Article  PubMed  Google Scholar 

  35. Thairu N, Kiriakidis S, Dawson P, Paleolog E. Angiogenesis as a therapeutic target in arthritis in 2011: learning the lessons of the colorectal cancer experience. Angiogenesis. 2011;14:223–34.

    Article  PubMed  CAS  Google Scholar 

  36. Grote K, Schütt H, Schieffer B. Toll-like receptors in angiogenesis. Sci World J. 2011;11:981–91.

    CAS  Google Scholar 

  37. Szekanecz Z, Koch AE. Vascular involvement in rheumatic diseases: ‘vascular rheumatology’. Arthritis Res Ther. 2008;10:224.

    Article  PubMed  Google Scholar 

  38. Hall AP. Review of the pericyte during angiogenesis and its role in cancer and diabetic retinopathy. Toxicol Pathol. 2006;34:763–75.

    Article  PubMed  CAS  Google Scholar 

  39. Al Sabti H. Therapeutic angiogenesis in cardiovascular disease. J Cardiothorac Surg. 2007;2:49.

    Article  PubMed  Google Scholar 

  40. Yang W, Lee DY, Ben-David Y. The roles of microRNAs in tumorigenesis and angiogenesis. Int J Physiol Pathophysiol Pharmacol. 2011;3:140–55.

    PubMed  CAS  Google Scholar 

  41. Goel S, Duda DG, Xu L, Munn LL, Boucher Y, Fukumura D, et al. Normalization of the vasculature for treatment of cancer and other diseases. Physiol Rev. 2011;91:1071–121.

    Article  PubMed  CAS  Google Scholar 

  42. Fishbein MC. The vulnerable and unstable atherosclerotic plaque. Cardiovasc Pathol. 2010;19:6–11.

    Article  PubMed  Google Scholar 

  43. Moulton KS. Angiogenesis in atherosclerosis: gathering evidence beyond speculation. Curr Opin Lipidol. 2006;17:548–55.

    Article  PubMed  CAS  Google Scholar 

  44. Herrmann J, Lerman LO, Mukhopadhyay D, Napoli C, Lerman A. Angiogenesis in atherogenesis. Arterioscler Thromb Vasc Biol. 2006;26:1948–57.

    Article  PubMed  CAS  Google Scholar 

  45. Moulton KS, Vakili K, Zurakowski D, Soliman M, Butterfield C, Sylvin E, et al. Inhibition of plaque neovascularization reduces macrophage accumulation and progression of advanced atherosclerosis. Proc Natl Acad Sci. 2003;100:4736–41.

    Article  PubMed  CAS  Google Scholar 

  46. Sluimer JC, Daemen MJ. Novel concepts in atherogenesis: angiogenesis and hypoxia in atherosclerosis. J Pathol. 2009;218:7–29.

    Article  PubMed  Google Scholar 

  47. Sluimer JC, Gasc JM, van Wanroij JL, Kisters N, Groeneweg M, Sollewijn Gelpke MD, et al. Hypoxia, hypoxia-inducible transcription factor, and macrophages in human atherosclerotic plaques are correlated with intraplaque angiogenesis. J Am Coll Cardiol. 2008;51:1258–65.

    Article  PubMed  CAS  Google Scholar 

  48. Zhao Q, Egashira K, Hiasa K, Ishibashi M, Inoue S, Ohtani K, et al. Essential role of vascular endothelial growth factor and Flt-1 signals in neointimal formation after peri-adventitial injury. Arterioscler Thromb Vasc Biol. 2004;24:2284–9.

    Article  PubMed  CAS  Google Scholar 

  49. Langheinrich AC, Sedding DG, Kampschulte M, Moritz R, Wilhelm J, Haberbosch WG, et al. 3-Deazaadenosine inhibits vasa vasorum neovascularization in aortas of ApoE (−/−)/LDL(−/−) double knockout mice. Atherosclerosis. 2008;202:103–10.

    Article  PubMed  Google Scholar 

  50. Pilarczyk K, Sattler KJ, Galili O, Versari D, Olson ML, Meyer FB, et al. Placenta growth factor expression in human atherosclerotic carotid plaques is related to plaque destabilization. Atherosclerosis. 2008;196:333–40.

    Article  PubMed  CAS  Google Scholar 

  51. Garbin U, Fratta Pasini A, Stranieri C, Manfro S, Mozzini C, Boccioletti V, et al. Effects of nebivolol on endothelial gene expression during oxidative stress in human umbilical vein endothelial cells. Mediators Inflamm. 2008;2008:367590.

    Article  PubMed  Google Scholar 

  52. Folkman J. Fighting cancer by attacking its blood supply. Sci Am. 1996;275:150–4.

    Article  PubMed  CAS  Google Scholar 

  53. Baeriswyl V, Christofori G. The angiogenic switch in carcinogenesis. Semin Cancer Biol. 2009;19:329–37.

    Article  PubMed  CAS  Google Scholar 

  54. Ribatti D, Nico B, Crivellato E, Roccaro AM, Vacca A. The history of the angiogenic switch concept. Leukemia. 2007;21:44–52.

    Article  PubMed  CAS  Google Scholar 

  55. Liss C, Fekete MJ, Hasina R, Lingen MW. Retinoic acid modulates the ability of macrophages to participate in the induction of the angiogenic phenotype in head and neck squamous cell carcinoma. Int J Cancer. 2002;100:283–9.

    Article  PubMed  CAS  Google Scholar 

  56. Avni R, Cohen B, Neeman M. Hypoxic stress and cancer: imaging the axis of evil in tumor metastasis. NMR Biomed. 2011;24:569–81.

    PubMed  CAS  Google Scholar 

  57. Rezvani HR, Ali N, Nissen LJ, Harfouche G, de Verneuil H, Taïeb A, et al. HIF-1α in epidermis: oxygen sensing, cutaneous angiogenesis, cancer, and non-cancer disorders. J Invest Dermatol. 2011;131:1793–805.

    Article  PubMed  CAS  Google Scholar 

  58. Glinskii OV, Abraha TW, Turk JR, Glinsky VV, Huxley VH. PDGF/VEGF system activation and angiogenesis following initial post ovariectomy meningeal microvessel loss. Cell Cycle. 2008;7:1385–90.

    Article  PubMed  CAS  Google Scholar 

  59. Diaz-Gonzalez JA, Russell J, Rouzaut A, Gil-Bazo I, Montuenga L. Targeting hypoxia and angiogenesis through HIF-1alpha inhibition. Cancer Biol Ther. 2005;4:1055–62.

    Article  PubMed  CAS  Google Scholar 

  60. Carmeliet P. VEGF as a key mediator of angiogenesis in cancer. Oncology. 2005;69 Suppl 3:4–10.

    Article  PubMed  CAS  Google Scholar 

  61. Klaunig JE, Kamendulis LM, Hocevar BA. Oxidative stress and oxidative damage in carcinogenesis. Toxicol Pathol. 2010;38:96–109.

    Article  PubMed  CAS  Google Scholar 

  62. Rajput S, Wilber A. Roles of inflammation in cancer initiation, progression, and metastasis. Front Biosci (Schol Ed). 2010;2:176–83.

    Article  Google Scholar 

  63. Rojas A, Silva R, Figueroa H, Morales MA. Oxidative stress in tumor microenvironment-Its role in angiogenesis. Zhongguo Fei Ai Za Zhi. 2008;11:297–305.

    PubMed  CAS  Google Scholar 

  64. Ashino H, Shimamura M, Nakajima H, Dombou M, Kawanaka S, Oikawa T, et al. Novel function of ascorbic acid as an angiostatic factor. Angiogenesis. 2003;6:259–69.

    Article  PubMed  CAS  Google Scholar 

  65. Tang FY, Meydani M. Green tea catechins and vitamin E inhibit angiogenesis of human microvascular endothelial cells through suppression of IL-8 production. Nutr Cancer. 2001;41:119–25.

    PubMed  CAS  Google Scholar 

  66. Tang FY, Nguyen NM, Meydani M. Green tea catechins inhibit VEGF-induced angiogenesis in vitro through suppression of VE-cadherin phosphorylation and inactivation of akt molecule. Int J Cancer. 2003;106:871–8.

    Article  PubMed  CAS  Google Scholar 

  67. Sappayatosok K, Maneerat Y, Swasdison S, Viriyavejakul P, Dhanuthai K, Zwang J, et al. Expression of pro-inflammatory protein, iNOS, VEGF and COX-2 in oral squamous cell carcinoma (OSCC), relationship with angiogenesis and their clinico-pathological correlation. Med Oral Patol Oral Cir Bucal. 2009;14:E319–24.

    PubMed  Google Scholar 

  68. Chen M, Nagase M, Fujita T, Narumiya S, Masaki T, Sawamura T. Diabetes enhances lectin-like oxidized LDL receptor-1 (LOX-1) expression in the vascular endothelium: possible role of LOX-1 ligand and AGE. Biochem Biophys Res Commun. 2001;287:962–8.

    Article  PubMed  CAS  Google Scholar 

  69. Li D, Williams V, Liu L, Chen H, Sawamura T, Antakli T, et al. LOX-1 inhibition in myocardial ischemia-reperfusion injury: modulation of MMP-1 and inflammation. Am J Physiol Heart Circ Physiol. 2002;283:H1795–801.

    PubMed  CAS  Google Scholar 

  70. Aoyama T, Fujiwara H, Masaki T, Sawamura T. Induction of lectin-like oxidized LDL receptor by oxidized LDL and lysophosphatidylcholine in cultured endothelial cells. J Mol Cell Cardiol. 1999;31:2101–14.

    Article  PubMed  CAS  Google Scholar 

  71. Li DY, Zhang YC, Philips MI, Sawamura T, Mehta JL. Upregulation of endothelial receptor for oxidized low-density lipoprotein (LOX-1) in cultured human coronary artery endothelial cells by angiotensin II type 1 receptor activation. Circ Res. 1999;84:1043–9.

    PubMed  CAS  Google Scholar 

  72. Cominacini L, Pasini AF, Garbin U, Davoli A, Tosetti ML, Campagnola M, et al. Oxidized low density lipoprotein (ox-LDL) binding to ox-LDL receptor-1 in endothelial cells induces the activation of NF-κB through an increased production of intracellular reactive oxygen species. J Biol Chem. 2000;275:12633–8.

    Article  PubMed  CAS  Google Scholar 

  73. Song G, Tian H, Liu J, Zhang H, Sun X, Qin S. H(2) inhibits TNF-α-induced lectin-like oxidized LDL receptor-1 expression by inhibiting nuclear factor κB activation in endothelial cells. Biotechnol Lett. 2011;33:1715–22.

    Article  PubMed  CAS  Google Scholar 

  74. Hofnagel O, Luechtenborg B, Stolle K, Lorkowski S, Eschert H, Plenz G, et al. Proinflammatory cytokines regulate LOX-1 expression in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol. 2004;24:1789–95.

    Article  PubMed  CAS  Google Scholar 

  75. Zhao XQ, Zhang MW, Wang F, Zhao YX, Li JJ, Wang XP, et al. CRP enhances soluble LOX-1 release from macrophages by activating TNF-α converting enzyme. J Lipid Res. 2011;52:923–33.

    Article  PubMed  CAS  Google Scholar 

  76. Murase T, Kume N, Korenaga R, Ando J, Sawamura T, Masaki T, et al. Fluid shear stress transcriptionally induces lectin-like oxidized LDL receptor-1 in vascular endothelial cells. Circ Res. 1998;83:328–33.

    PubMed  CAS  Google Scholar 

  77. Li D, Mehta JL. Upregulation of endothelial receptor for oxidized LDL (LOX-1) by oxidized LDL and implications in apoptosis of human coronary artery endothelial cells: evidence from use of antisense LOX-1 mRNA and chemical inhibitors. Arterioscler Thromb Vasc Biol. 2000;20:1116–22.

    Article  PubMed  CAS  Google Scholar 

  78. Li DY, Chen HJ, Staples ED, Ozaki K, Annex B, Singh BK, et al. Oxidized low-density lipoprotein receptor LOX-1 and apoptosis in human atherosclerotic lesions. J Cardiovasc Pharmacol Ther. 2002;7:147–53.

    Article  PubMed  CAS  Google Scholar 

  79. Lu J, Mitra S, Wang X, Khaidakov M, Mehta JL. Oxidative Stress and Lectin-Like Ox-LDL-Receptor LOX-1 in Atherogenesis and Tumorigenesis. Antioxid Redox Signal. 2011 May 25.

  80. Liang M, Zhang P, Fu J. Up-regulation of LOX-1 expression by TNF-alpha promotes trans-endothelial migration of MDA-MB-231 breast cancer cells. Cancer Lett. 2007;258:31–7.

    Article  PubMed  CAS  Google Scholar 

  81. Dandapat A, Hu C, Sun L, Mehta JL. Small concentrations of oxLDL induce capillary tube formation from endothelial cells via LOX-1-dependent redox-sensitive pathway. Arterioscler Thromb Vasc Biol. 2007;27:2435–42.

    Article  PubMed  CAS  Google Scholar 

  82. Khaidakov M, Szwedo J, Mitra S, Ayyadevara S, Dobretsov M, Lu J, et al. Antiangiogenic and antimitotic effects of aspirin in hypoxia–reoxygenation modulation of the LOX-1-NADPH oxidase axis as a potential mechanism. J Cardiovasc Pharmacol. 2010;56:635–41.

    Article  PubMed  CAS  Google Scholar 

  83. Inomata Y, Fukushima M, Hara R, Takahashi E, Honjo M, Koga T, et al. Suppression of choroidal neovascularization in lectin-like oxidized low-density lipoprotein receptor type 1-deficient mice. Invest Ophthalmol Vis Sci. 2009;50:3970–6.

    Article  PubMed  Google Scholar 

  84. Kanata S, Akagi M, Nishimura S, Hayakawa S, Yoshida K, Sawamura T, et al. Oxidized LDL binding to LOX-1 upregulates VEGF expression in cultured bovine chondrocytes through activation of PPAR-gamma. Biochem Biophys Res Commun. 2006;348:1003–10.

    Article  PubMed  CAS  Google Scholar 

  85. Khaidakov M, Wang X, Mehta JL. Potential involvement of LOX-1 in functional consequences of endothelial senescence. PLoS One. 2011;6:e20964.

    Article  PubMed  CAS  Google Scholar 

  86. Koretz R. Meta-analysis: aspirin reduces risk for colon cancer and related mortality at 20 years, particularly when taken for ≥ 5 years. Ann Intern Med. 2011;154:JC3-3.

    PubMed  Google Scholar 

  87. Khaidakov M, Wang W, Khan JA, Kang BY, Hermonat PL, Mehta JL. Statins and angiogenesis: is it about connections? Biochem Biophys Res Commun. 2009;387:543–7.

    Article  PubMed  CAS  Google Scholar 

  88. Shimoyama S. Statins and gastric cancer risk. Hepatogastroenterology. 2011;58:1057–61.

    PubMed  Google Scholar 

  89. Ahern TP, Pedersen L, Tarp M, Cronin-Fenton DP, Garne JP, Silliman RA, et al. Statin Prescriptions and Breast Cancer Recurrence Risk: A Danish Nationwide Prospective Cohort Study. J Natl Cancer Inst. 2011 Aug 2.

  90. Marelli C, Gunnarsson C, Ross S, Haas S, Stroup DF, Cload P, et al. Statins and risk of cancer a retrospective cohort analysis of 45,857 matched pairs from an electronic medical records database of 11 million adult americans. J Am Coll Cardiol. 2011;58:530–7.

    Article  PubMed  CAS  Google Scholar 

  91. Li D, Chen H, Romeo F, Sawamura T, Saldeen T, Mehta JL. Statins modulate oxidized low-density lipoprotein-mediated adhesion molecule expression in human coronary artery endothelial cells: role of LOX-1. J Pharmacol Exp Ther. 2002;302:601–5.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Specialized Research Fund for the Doctoral Program of Higher Education, Ministry of Education of China (No. 20100162110058 to CPH), the Department of Veterans Affairs, Washington, DC, USA (JLM) and the Arkansas Bioventures Institute, Little Rock, AR, USA (JLM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changping Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, J., Yan, M., Mehta, J.L. et al. Angiogenesis is a Link Between Atherosclerosis and Tumorigenesis: Role of LOX-1. Cardiovasc Drugs Ther 25, 461–468 (2011). https://doi.org/10.1007/s10557-011-6343-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-011-6343-3

Key words

Navigation