Skip to main content

Advertisement

Log in

miRNA-34a is associated with docetaxel resistance in human breast cancer cells

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Docetaxel is a chemotherapy drug to treat breast cancer, however as with many chemotherapeutic drugs resistance to docetaxel occurs in 50% of patients, and the underlying molecular mechanisms of drug resistance are not fully understood. Gene regulation through microRNAs (miRNA) has been shown to play an important role in cancer drug resistance. By directly targeting mRNA, miRNAs are able to inhibit genes that are necessary for signalling pathways or drug induced apoptosis rendering cells drug resistant. This study investigated the role of differential miRNA expression in two in vitro breast cancer cell line models (MCF-7, MDA-MB-231) of acquired docetaxel resistance. MiRNA microarray analysis identified 299 and 226 miRNAs altered in MCF-7 and MDA-MB-231 docetaxel-resistant cells, respectively. Docetaxel resistance was associated with increased expression of miR-34a and miR-141 and decreased expression of miR-7, miR-16, miR-30a, miR-125a-5p, miR-126. Computational target prediction revealed eight candidate genes targeted by these miRNAs. Quantitative PCR and western analysis confirmed decreased expression of two genes, BCL-2 and CCND1, in docetaxel-resistant cells, which are both targeted by miR-34a. Modulation of miR-34a expression was correlated with BCL-2 and cyclin D1 protein expression changes and a direct interaction of miR-34a with BCL-2 was shown by luciferase assay. Inhibition of miR-34a enhanced response to docetaxel in MCF-7 docetaxel-resistant cells, whereas overexpression of miR-34a conferred resistance in MCF-7 docetaxel-sensitive cells. This study is the first to show differences in miRNA expression, in particular, increased expression of miR-34a in an acquired model of docetaxel resistance in breast cancer. This serves as a mechanism of acquired docetaxel resistance in these cells, possibly through direct interactions with BCL-2 and CCND1, therefore presenting a potential therapeutic target for the treatment of docetaxel-resistant breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Smith IC, Heys SD, Hutcheon AW, Miller ID, Payne S, Gilbert FJ, Ah-See AK, Eremin O, Walker LG, Sarkar TK, Eggleton SP, Ogston KN (2002) Neoadjuvant chemotherapy in breast cancer: significantly enhanced response with docetaxel. J Clin Oncol 20:1456–1466

    Article  PubMed  CAS  Google Scholar 

  2. Jones SE, Erban J, Overmoyer B, Budd GT, Hutchins L, Lower E, Laufman L, Sundaram S, Urba WJ, Pritchard KI, Mennel R, Richards D, Olsen S, Meyers ML, Ravdin PM (2005) Randomized phase III study of docetaxel compared with paclitaxel in metastatic breast cancer. J Clin Oncol 23:5542–5551

    Article  PubMed  CAS  Google Scholar 

  3. Modok S, Mellor HR, Callaghan R (2006) Modulation of multidrug resistance efflux pump activity to overcome chemoresistance in cancer. Curr Opin Pharmacol 6:350–354

    Article  PubMed  CAS  Google Scholar 

  4. Miyoshi Y, Taguchi T, Kim SJ, Tamaki Y, Noguchi S (2005) Prediction of response to docetaxel by immunohistochemical analysis of CYP3A4 expression in human breast cancers. Breast Cancer 12:11–15

    Article  PubMed  Google Scholar 

  5. Noguchi S (2006) Predictive factors for response to docetaxel in human breast cancers. Cancer Sci 97:813–820

    Article  PubMed  CAS  Google Scholar 

  6. Shalli K, Brown I, Heys SD, Schofield AC (2005) Alterations of beta-tubulin isotypes in breast cancer cells resistant to docetaxel. FASEB J 19:1299–1301

    PubMed  CAS  Google Scholar 

  7. Kastl L, Brown I, Schofield AC (2010) Altered DNA methylation is associated with docetaxel resistance in human breast cancer cells. Int J Oncol 36:1235–1241

    PubMed  CAS  Google Scholar 

  8. Zhang XT, Yashiro M, Ren J, Hirakawa K (2006) Histone deacetylase inhibitor, trichostatin A, increases the chemosensitivity of anticancer drugs in gastric cancer cell lines. Oncol Rep 16:563–568

    PubMed  CAS  Google Scholar 

  9. Miska EA (2005) How microRNAs control cell division, differentiation and death. Curr Opin Genet Dev 15:563–568

    Article  PubMed  CAS  Google Scholar 

  10. Ying SY, Chang DC, Lin S (2008) The microRNA (miRNA): overview of the RNA genes that modulate gene function. Mol Biotechnol 38:257–268

    Article  PubMed  CAS  Google Scholar 

  11. Xia L, Zhang D, Du R, Pan Y, Zhao L, Sun S, Hong L, Liu J, Fan D (2008) miR-15b and miR-16 modulate multidrug resistance by targeting BCL-2 in human gastric cancer cells. Int J Cancer 123:372–379

    Article  PubMed  CAS  Google Scholar 

  12. Sun F, Fu H, Liu Q, Tie Y, Zhu J, Xing R, Sun Z, Zheng X (2008) Downregulation of CCND1 and CDK6 by miR-34a induces cell cycle arrest. FEBS Lett 582:1564–1568

    Article  PubMed  CAS  Google Scholar 

  13. Pan YZ, Morris ME, Yu AM (2009) MicroRNA-328 negatively regulates the expression of breast cancer resistance protein (BCRP/ABCG2) in human cancer cells. Mol Pharmacol 75:1374–1379

    Article  PubMed  CAS  Google Scholar 

  14. Miller TE, Ghoshal K, Ramaswamy B, Roy S, Datta J, Shapiro CL, Jacob S, Majumder S (2008) MicroRNA-221/222 confers tamoxifen resistance in breast cancer by targeting p27Kip1. J Biol Chem 283:29897–29903

    Article  PubMed  CAS  Google Scholar 

  15. Liang Z, Wu H, Xia J, Li Y, Zhang Y, Huang K, Wagar N, Yoon Y, Cho HT, Scala S, Shim H (2010) Involvement of miR-326 in chemotherapy resistance of breast cancer through modulating expression of multidrug resistance-associated protein 1. Biochem Pharmacol 79:817–824

    Article  PubMed  CAS  Google Scholar 

  16. Mei M, Ren Y, Zhou X, Yuan XB, Han L, Wang GX, Jia Z, Pu PY, Kang CS, Yao Z (2010) Downregulation of miR-21 enhances chemotherapeutic effect of taxol in breast carcinoma cells. Technol Cancer Res Treat 9:77–86

    PubMed  CAS  Google Scholar 

  17. Brown I, Shalli K, McDonald SL, Moir SE, Hutcheon AW, Heys SD, Schofield AC (2004) Reduced expression of p27 is a novel mechanism of docetaxel resistance in breast cancer cells. Breast Cancer Res 6:601–607

    Article  Google Scholar 

  18. Webster RJ, Giles KM, Price KJ, Zhang PM, Mattick JS, Leedman PJ (2009) Regulation of epidermal growth factor receptor signaling in human cancer cells by microRNA-7. J Biol Chem 284:5731–5741

    Google Scholar 

  19. Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M, Wojcik SE, Aqeilan RI, Zupo S, Dono M, Rassenti L, Alder H, Volinia S, Liu CG, Kipps TJ, Negrini M, Croce CM (2005) miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA 102:13944–13949

    Google Scholar 

  20. Liu Q, Fu H, Sun F, Zhang H, Tie Y, Zhu J, Xing R, Sun Z, Zheng X (2008) miR-16 family induces cell cycle arrest by regulating multiple cell cycle genes. Nucleic Acids Res 36:5391–5404

    Google Scholar 

  21. Nakamoto M, Jin P, O’Donnell WT, Warren ST (2005) Physiological identification of human transcripts translationally regulated by a specific microRNA. Hum Mol Genet 14:3813–3821

    Google Scholar 

  22. Yamakuchi M, Ferlito M, Lowenstein CJ (2008) miR-34a repression of SIRT1 regulates apoptosis. Proc Natl Acad Sci USA 105:13421–13426

    Google Scholar 

  23. Scott GK, Goga A, Bhaumik D, Berger CE, Sullivan CS, Benz CC (2007) Coordinate suppression of ERBB2 and ERBB3 by enforced expression of micro-RNA miR-125a or miR-125b. J Biol Chem 282:1479–1486

    Google Scholar 

  24. Liu B, Peng XC, Zheng XL, Wang J, Qin YW (2009) MiR-126 restoration down-regulate VEGF and inhibit the growth of lung cancer cell lines in vitro and in vivo. Lung Cancer 66:169–175

    Google Scholar 

  25. Beitzinger M, Peters L, Zhu JY, Kremmer E, Meister G (2007) Identification of human microRNA targets from isolated argonaute protein complexes. RNA Biol 4:76–84

    Google Scholar 

  26. Cole KA, Attiyeh EF, Mosse YP, Laquaglia MJ, Diskin SJ, Brodeur GM, Maris JM (2008) A functional screen identifies miR-34a as a candidate neuroblastoma tumor suppressor gene. Mol Cancer Res 6:735–742

    Article  PubMed  CAS  Google Scholar 

  27. Li N, Fu H, Tie Y, Hu Z, Kong W, Wu Y, Zheng X (2009) miR-34a inhibits migration and invasion by down-regulation of c-Met expression in human hepatocellular carcinoma cells. Cancer Lett 275:44–53

    Article  PubMed  CAS  Google Scholar 

  28. Fujita Y, Kojima K, Hamada N, Ohhashi R, Akao Y, Nozawa Y, Deguchi T, Ito M (2008) Effects of miR-34a on cell growth and chemoresistance in prostate cancer PC3 cells. Biochem Biophys Res Commun 377:114–119

    Article  PubMed  CAS  Google Scholar 

  29. Kojima K, Fujita Y, Nozawa Y, Deguchi T, Ito M (2010) MiR-34a attenuates paclitaxel-resistance of hormone-refractory prostate cancer PC3 cells through direct and indirect mechanisms. Prostate 70:1501–1512

    Article  PubMed  CAS  Google Scholar 

  30. Tarasov V, Jung P, Verdoodt B, Lodygin D, Epanchintsev A, Menssen A, Meister G, Hermeking H (2007) Differential regulation of microRNAs by p53 revealed by massively parallel sequencing: miR-34a is a p53 target that induces apoptosis and G1-arrest. Cell Cycle 6:1586–1593

    Article  PubMed  CAS  Google Scholar 

  31. Esquela-Kerscher A, Slack FJ (2006) Oncomirs—microRNAs with a role in cancer. Nat Rev Cancer 6:259–269

    Article  PubMed  CAS  Google Scholar 

  32. Kent OA, Mendell JT (2006) A small piece in the cancer puzzle: microRNAs as tumor suppressors and oncogenes. Oncogene 25:6188–6196

    Article  PubMed  CAS  Google Scholar 

  33. Han EK, Ng SC, Arber N, Begemann M, Weinstein IB (1999) Roles of cyclin D1 and related genes in growth inhibition, senescence and apoptosis. Apoptosis 4:213–219

    Article  PubMed  CAS  Google Scholar 

  34. Biliran H Jr, Wang Y, Banerjee S, Xu H, Heng H, Thakur A, Bollig A, Sarkar FH, Liao JD (2005) Overexpression of cyclin D1 promotes tumor cell growth and confers resistance to cisplatin-mediated apoptosis in an elastase-myc transgene-expressing pancreatic tumor cell line. Clin Cancer Res 11:6075–6086

    Article  PubMed  CAS  Google Scholar 

  35. Henriksson E, Baldetorp B, Borg A, Kjellen E, Akervall J, Wennerberg J, Wahlberg P (2006) p53 mutation and cyclin D1 amplification correlate with cisplatin sensitivity in xenografted human squamous cell carcinomas from head and neck. Acta Oncol 45:300–305

    Article  PubMed  CAS  Google Scholar 

  36. Zhang P, Zhang Z, Zhou X, Qiu W, Chen F, Chen W (2006) Identification of genes associated with cisplatin resistance in human oral squamous cell carcinoma cell line. BMC Cancer 6:224

    Article  PubMed  Google Scholar 

  37. Lukyanova NY, Rusetskya NV, Tregubova NA, Chekhun VF (2009) Molecular profile and cell cycle in MCF-7 cells resistant to cisplatin and doxorubicin. Exp Oncol 31:87–91

    PubMed  CAS  Google Scholar 

  38. Fan CW, Chan CC, Chao CC, Fan HA, Sheu DL, Chan EC (2004) Expression patterns of cell cycle and apoptosis-related genes in a multidrug-resistant human colon carcinoma cell line. Scand J Gastroenterol 39:464–469

    Article  PubMed  CAS  Google Scholar 

  39. Resnitzky D, Gossen M, Bujard H, Reed SI (1994) Acceleration of the G1/S phase transition by expression of cyclins D1 and E with an inducible system. Mol Cell Biol 14:1669–1679

    PubMed  CAS  Google Scholar 

  40. Resnitzky D, Reed SI (1995) Different roles for cyclins D1 and E in regulation of the G1-to-S transition. Mol Cell Biol 15:3463–3469

    PubMed  CAS  Google Scholar 

  41. Lukas J, Aagaard L, Strauss M, Bartek J (1995) Oncogenic aberrations of p16INK4/CDKN2 and cyclin D1 cooperate to deregulate G1 control. Cancer Res 55:4818–4823

    PubMed  CAS  Google Scholar 

  42. Lukas J, Pagano M, Staskova Z, Draetta G, Bartek J (1994) Cyclin D1 protein oscillates and is essential for cell cycle progression in human tumour cell lines. Oncogene 9:707–718

    PubMed  CAS  Google Scholar 

  43. Kim R, Tanabe K, Emi M, Uchida Y, Toge T (2005) Modulation of tamoxifen sensitivity by antisense Bcl-2 and trastuzumab in breast carcinoma cells. Cancer 103:2199–2207

    Article  PubMed  CAS  Google Scholar 

  44. Huang Y, Ray S, Reed JC, Ibrado AM, Tang C, Nawabi A, Bhalla K (1997) Estrogen increases intracellular p26Bcl-2 to p21Bax ratios and inhibits taxol-induced apoptosis of human breast cancer MCF-7 cells. Breast Cancer Res Treat 42:73–81

    Article  PubMed  CAS  Google Scholar 

  45. Hori M, Nogami T, Itabashi M, Yoshimi F, Ono H, Koizumi S (1997) Expression of Bcl-2 in human breast cancer: correlation between hormone receptor status, p53 protein accumulation and DNA strand breaks associated with apoptosis. Pathol Int 47:757–762

    Article  PubMed  CAS  Google Scholar 

  46. Elledge RM, Green S, Howes L, Clark GM, Berardo M, Allred DC, Pugh R, Ciocca D, Ravdin P, O’Sullivan J, Rivkin S, Martino S, Osborne CK (1997) bcl-2, p53, and response to tamoxifen in estrogen receptor-positive metastatic breast cancer: a Southwest Oncology Group Study. J Clin Oncol 15:1916–1922

    PubMed  CAS  Google Scholar 

  47. el-Ahmady O, El-Salahy E, Mahmoud M, Wahab MA, Eissa S, Khalifa A (2002) Multivariate analysis of bcl-2, apoptosis, P53 and HER-2/neu in breast cancer: a short-term follow-up. Anticancer Res 22:2493–2499

    PubMed  CAS  Google Scholar 

  48. Bilalovic N, Vranic S, Hasanagic S, Basić H, Tatarević A, Beslija S, Selak I (2004) The Bcl-2 protein: a prognostic indicator strongly related to ER and PR in breast cancer. Bosn J Basic Med Sci 4:5–12

    PubMed  Google Scholar 

  49. Cardoso F, Paesmans M, Larsimont D, Durbecq V, Bernard-Marty C, Rouas G, Dolci S, Sotiriou C, Piccart MJ, Di Leo A (2004) Potential predictive value of Bcl-2 for response to tamoxifen in the adjuvant setting of node-positive breast cancer. Clin Breast Cancer 5:364–369

    Article  PubMed  CAS  Google Scholar 

  50. Bommer GT, Gerin I, Feng Y, Kaczorowski AJ, Kuick R, Love RE, Zhai Y, Giordano TJ, Qin ZS, Moore BB, MacDougald OA, Cho KR, Fearon ER (2007) p53-mediated activation of miRNA34 candidate tumor-suppressor genes. Curr Biol 17:1298–1307

    Article  PubMed  CAS  Google Scholar 

  51. Wang X, Liu P, Zhu H, Xu Y, Ma C, Dai X, Huang L, Liu Y, Zhang L, Qin C (2009) miR-34a, a microRNA up-regulated in a double transgenic mouse model of Alzheimer’s disease, inhibits BCL-2 translation. Brain Res Bull 80:268–273

    Article  PubMed  CAS  Google Scholar 

  52. Cicatiello L, Mutarelli M, Grober OM, Paris O, Ferraro L, Ravo M, Tarallo R, Luo S, Schroth GP, Seifert M, Zinser C, Chiusano ML, Traini A, De Bortoli M, Weisz A (2010) Estrogen receptor alpha controls a gene network in luminal-like breast cancer cells comprising multiple transcription factors and microRNAs. Am J Pathol 176:2113–2130

    Article  PubMed  CAS  Google Scholar 

  53. Kondo N, Toyama T, Sugiura H, Fujii Y, Yamashita H (2008) miR-206 Expression is down-regulated in estrogen receptor alpha-positive human breast cancer. Cancer Res 68:5004–5008

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors especially thank Dr Alun Hughes, Dr Scott Davidson and Dr Sandra Stoppelkamp for their help with performing the quantitative PCR and the dual luciferase studies. Special acknowledgements to Dr Guido Bommer for providing the pGL3-BCL2 wild type and mutant plasmids. This work was supported by TENOVUS Scotland, the Dr James Alexander Mearns, PhD studentship and the Fraserburgh Moonlight Prowl Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Kastl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kastl, L., Brown, I. & Schofield, A.C. miRNA-34a is associated with docetaxel resistance in human breast cancer cells. Breast Cancer Res Treat 131, 445–454 (2012). https://doi.org/10.1007/s10549-011-1424-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-011-1424-3

Keywords

Navigation