Skip to main content

Advertisement

Log in

Intercomparison of Large-Eddy Simulations of the Antarctic Boundary Layer for Very Stable Stratification

  • Research Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

In polar regions, where the boundary layer is often stably stratified, atmospheric models produce large biases depending on the boundary-layer parametrizations and the parametrization of the exchange of energy at the surface. This model intercomparison focuses on the very stable stratification encountered over the Antarctic Plateau in 2009. Here, we analyze results from 10 large-eddy-simulation (LES) codes for different spatial resolutions over 24 consecutive hours, and compare them with observations acquired at the Concordia Research Station during summer. This is a challenging exercise for such simulations since they need to reproduce both the 300-m-deep convective boundary layer and the very thin stable boundary layer characterized by a strong vertical temperature gradient (10 K difference over the lowest 20 m) when the sun is low over the horizon. A large variability in surface fluxes among the different models is highlighted. The LES models correctly reproduce the convective boundary layer in terms of mean profiles and turbulent characteristics but display more spread during stable conditions, which is largely reduced by increasing the horizontal and vertical resolutions in additional simulations focusing only on the stable period. This highlights the fact that very fine resolution is needed to represent such conditions. Complementary sensitivity studies are conducted regarding the roughness length, the subgrid-scale turbulence closure as well as the resolution and domain size. While we find little dependence on the surface-flux parametrization, the results indicate a pronounced sensitivity to both the roughness length and the turbulence closure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. Commonwealth Scientific and Industrial Research Organization LES model (Huang and Bou-Zeid 2013).

  2. Matlab LES model based on the locally-averaged scale-dependent dynamic SGS modelling approach(Basu and Porte-Agel 2006).

  3. The Mesoscale Non-Hydrostatic model (Lac et al. 2018).

  4. The Parallelized Large-Eddy Simulation Model (Maronga et al. 2015, 2020a).

  5. The Met Office NERC Cloud model, a re-write of the UK Met-Office Large-Eddy Model (Edwards et al. 2014, Brown et al. 2015).

  6. Extended Large-Eddy Microscale Model (Fuka and Brechler 2011, Fuka 2015).

  7. Computational fluid dynamics code made for direct numerical simulation and large-eddy simulation (Van Heerwaarden et al. 2018).

  8. This is the classical cut-off frequency used for flux computation, and, using ogive computation, it was checked that this is appropriate for turbulence measurements in this situation.

  9. Dutch Atmosphere Large-Eddy Simulation (Heus et al. 2010).

References

  • Basu S, Porte-Agel F (2006) Large-eddy simulation of stably stratified atmospheric boundary layer turbulence: a scale-dependent dynamic modeling approach. J Atmos Sci 63:2074–2091

    Google Scholar 

  • Bazile E, Couvreux F, Le Moigne P, Genthon C, Holtslag AAM, Svensson G (2014) GABLS4: an intercomparison case to study the stable boundary layer over the Antarctic plateau. Global Ener Water Cycle Exper News 24(4):4

    Google Scholar 

  • Beare RJ, Macvean MK, Holtslag AAM, Cuxart J, Golaz J-C, Jimenez MA, Khairoutdinov M, Kosovic M, Lewellen D, Lund TS, Lundquist JK, Mccabe A, Moene AF, Noh Y, Raasch S, Sullivan P (2006) An intercomparison of large-eddy simulations of the stable boundary layer. Boundary-Layer Meteorol 118:247–272

    Google Scholar 

  • Bosveld FC, Baas P, Steeneveld G-J, Holtslag AAM, Wangevine WM, Bazile E, de Bruijn EIF, Deacu D, Edwards JM, Ek M, Larson VE, Pleim JE, Raschendorfer M, Svensson G (2014a) The third GABLS intercomparison case for evaluation studies of boundary-layer models. Part B: results and process understanding. Boundary-Layer Meteorol 152:157–187

    Google Scholar 

  • Bosveld FC, Baas P, van Meijgaard E, de Bruijn EIF, Steeneveld G-J, Holtslag AAM (2014b) The third GABLS intercomparison case for evaluation studies of boundary-layer models. Part A: case selection and set-up. Boundary-Layer Meteorol 152:133–156

    Google Scholar 

  • Bou-Zeid E, Meneveau C, Parlange M (2005) A scale-dependent Lagrangian dynamic model for large eddy simulation of complex turbulent flows. Phys Fluids 17:025105

    Google Scholar 

  • Bou-Zeid E, Higgins C, Huwald H, Parlange MB, Meneveau C (2010) Field study of the dynamics and modelling of subgrid scale turbulence in a stable atmospheric surface layer over a glacier. J Fluid Mech 665:480–515

    Google Scholar 

  • Brown N, Weiland M, Hill A, Shipway B, Maynard C, Allen T, Rezny M (2015) A highly scalable met office NERC cloud model. In: Proceedings of the 3rd international conference on exascale applications and software. Edinburgh, UK, April 2015

  • Casasanta G, Pietroni I, Petenko I, Argentini S (2014) Observed and modelled convective mixing-layer height at dome C, Antarctica. Boundary-Layer Meteorol 151:597–608

    Google Scholar 

  • Cheng A, Xu K-M (2011) Preliminary results from a multiscale modeling framework with a third-order turbulence closure in its cloud-resolving model component. J Geophys Res 116:D14101

    Google Scholar 

  • Chung D, Matheou G (2012) Direct numerical simulation of stationary homogeneous stratified sheared turbulence. J Fluid Mech 696:434–467

    Google Scholar 

  • Chung D, Matheou G (2014) Large-Eddy simulation of stratified turbulence. Part I: a vortex-based subgrid-scale model. J Atmos Sci 71:1863–1879

    Google Scholar 

  • Cuxart J, Holtslag AAM, Beare RJ, Bazile E, Beljaars A, Cheng A, Canangla L, Ek M, Freedman F, Hamdi R, Kerstein A, Kitagawa H, Lenderink G, Lewellen D, Mailhot J, Mauritsen T, Perov V, Schayes G, Steeneveld G-J, Svensson G, Taylor P, Weng W, Wunsch S, Xu K-M (2006) Single-column model intercomparison for a stably stratified atmospheric boundary layer. Boundary-Layer Meteorol 118:273–303

    Google Scholar 

  • Deardorff JW (1974) Three-dimensional numerical study of the height and mean structure or a heated planetary boundary layer. Boundary-Layer Meteorol 7:81–106

    Google Scholar 

  • Deardorff JW (1980) Stratocumulus-capped mixed layers derived from a three-dimensional model. Boundary-Layer Meteorol 18:495–527

    Google Scholar 

  • Edwards JM (2009) Radiative processes in the stable boundary layer: part II. The development of the nocturnal boundary layer. Boundary-Layer Meteorol 131:127–146

    Google Scholar 

  • Edwards JM, Basu S, Bosveld FC, Holtslag AAM (2014) The impact of radiation on the GABLS3 large-eddy simulation through the night and during the morning transition. Boundary-Layer Meteorol 152:189–211

    Google Scholar 

  • Fuka V (2015) PoisFFT—a free parallel fast Poisson solver. Appl Math Comput 267:356–364

    Google Scholar 

  • Fuka V, Brechler J (2011) Large Eddy simulation of the stable boundary Layer. In: Fort J, Furst J, Halama J, Herbin R, Hubert F (eds) Finite volumes for complex applications Vi: problems & perspectives, vol 1, pp 485–493

  • Genthon C, Six D, Gallee H, Grigioni P, Pellegrini A (2013) Two years of atmospheric boundary layer observations on a 45-m tower at Dome C on the Antarctic plateau. J Geophys Res Atmos 118:3218–3232

    Google Scholar 

  • Genthon C, Piard L, Vignon E, Madeleine J-B, Casado M, Gallée H (2017) Atmospheric moisture supersaturation in the near-surface atmosphere at Dome C, Antarctic Plateau. Atmos Chem Phys 17:1–14

    Google Scholar 

  • Ha K-J, Hyun Y-K, Oh H-M, Kim K-E, Mahrt L (2007) Evaluation of boundary layer similarity theory for stable conditions in CASES-99. Mon Weather Rev 135(10):3474–3483

    Google Scholar 

  • Heus T, van Heerwaarden CC, Jonker HJJ, Siebesma AP, Axelsen S, van den Dries K, Geoffroy O, Moene AF, Pino D, de Roode SR, Ja Vila-Guerau (2010) Formulation of the Dutch atmospheric large-eddy simulation (DALES) and overview of its applications. Geosci Model Dev 3:415–444

    Google Scholar 

  • Högström U (1988) Non-dimensional wind and temperature profiles in the atmospheric surface layer: a re-evaluation. Boundary-Layer Meteorol 42:55–78

    Google Scholar 

  • Holtslag AAM, Svensson G, Baas P, Basu S, Beare B, Beljaars ACM, Bosveld FC, Cuxart J, Lindvall J, Steeneveld GJ, Tjernstrom M, Van de Wiel BJH (2013) Stable atmospheric boundary layers and diurnal cycles challenges for weather and climate models. Bull Am Meteorol Soc 94:1691–1706

    Google Scholar 

  • Hourdin F, Grandpeix J-Y, Rio C, Bony S, Jam A, Chéruy F, Rochetin N, Fairhead L, Idelkadi A, Musat I, Dufresne J-L, Lahellec A, Lefebvre M-P, Roehrig R (2013) LMDZ5B: the atmospheric component of the IPSL climate model with revisited parameterizations for clouds and convection. Clim Dyn 40:2193–2222

    Google Scholar 

  • Huang J, Bou-Zeid E (2013) Turbulence and vertical fluxes in the stable atmospheric boundary layer. Part I: a large-eddy simulation study. J Atmos Sci 70:1513–1527

    Google Scholar 

  • Khairoutdinov MF, Randall DA (2003) Cloud resolving modeling of the ARM summer 1997 IOP: model formulation, results, uncertainties, and sensitivities. J Atmos Sci 60:607–625

    Google Scholar 

  • King JC, Connolley WM, Derbyshire SH (2001) Sensitivity of modelled Antarctic climate to surface and boundary-layer flux parametrizations. Q J R Meteorol Soc 127:779–794

    Google Scholar 

  • King JC, Argentini SA, Anderson PS (2006) Contrasts between the summertime surface energy balance and boundary layer structure at Dome C and Halley stations. Antarctica, J Geophys Res Atmos, p 111

    Google Scholar 

  • Lac C, Chaboureau P, Masson V, Pinty P, Tulet P, Escobar J, Leriche M, Barthe C, Aouizerats B, Augros C, Aumond P, Auguste F, Bechtold P, Berther S, Bielli S, Bosseur F, Caumont O, Cohard JM, Colin J, Couvreux F, Cuxart J, Delautier G, Dauhut T, Ducrocq V, Filippi JB, Gazen D, Geoffroy O, Gheusi F, Honnert R, Lafore JP, Lebeaupin Brossier C, Libois Q, Lunet T, Mari C, Maric T, Mascart P, Mogé M, Molinié G, Nuissier O, Pantillon F, Peyrillé P, Pergaud J, Perraud E, Pianezze J, Redelsperger JL, Ricard D, Richard E, Riette S, Rodier Q, Seyfried Schoetter R, Stein J, Suhre K, Taufour M, Thouron O, Turner S, Verrelle A, Vié B, Visentin F, Vionnet V, Wautelet P (2018) Overview of the Meso-NH model version 5.4 and its applications. Geosci Model Dev 298:1–66

    Google Scholar 

  • Lilly DK (1962) On the numerical simulation of buoyant convection. Tellus 14:148–172

    Google Scholar 

  • Lilly D K (1966) On the application of the eddy viscosity concept. The inertial sub-range of turbulence, NCAR manuscript 123. National Center for Atmospheric Research: Boulder, CO

  • Mahrt L (1999) Stratified atmospheric boundary layers. Boundary-Layer Meteorol 90:375–396

    Google Scholar 

  • Mahrt L (2008) Bulk formulation of surface fluxes extended to weak-wind stable conditions. Q J R Meteorol Soc 134:1–10

    Google Scholar 

  • Mahrt L (2010) Variability and maintenance of turbulence in the very stable boundary layer. Boundary-Layer Meteorol 135:1–18

    Google Scholar 

  • Mahrt L (2014) Stably stratified atmospheric boundary layers. Annu Rev Fluid Mech 46:23–45

    Google Scholar 

  • Mahrt L, Larsen S (1990) Relation of slope winds to the ambient flow over gentle terrain. Boundary-Layer Meteorol 53:93–102

    Google Scholar 

  • Maronga B, Griyschka M, Heinze R, Hoffmann F, Kanani-Suhring F, Keck M, Ketelsen K, Letzel MO, Suhring M, Raasch S (2015) The parallelized large-eddy simulation model (PALM) version 4.0 for atmospheric and oceanic flows: model formulation, recent developments, and future perspectives. Geosci Model Dev 8:2515–2551

    Google Scholar 

  • Maronga, B, C Knigge, S Raasch (2020a) An improved surface boundary condition for large eddy simulations based on Monin-Obukhov similarity theory: evaluation and consequences for grid convergence in neutral and stable conditions. In press Boundary-Layer Meteorol

  • Maronga B, Banzhaf S, Burmeister C, Esch T, Forkel R, Fröhlich D, Fuka V, Gehrke KG, Geletič J, Giersch S, Gronemeier T, Groß G, Heldens W, Hellsten A, Hoffmann F, Inagaki A, Kadasch E, Kanani-Sühring F, Ketelsen K, Khan BA, Knigge C, Knoop H, Krč P, Kurppa M, Maamari H, Matzarakis A, Mauder M, Pallasch M, Pavlik D, Pfafferott J, Resler J, Rissmann S, Russo E, Salim M, Schrempf M, Schwenkel J, Seckmeyer G, Schubert S, Sühring M, von Tils R, Vollmer L, Ward S, Witha B, Wurps H, Zeidler J, Raasch S (2020) Overview of the PALM model system 6.0. Geosci Model Dev 13:1335–1372. https://doi.org/10.5194/gmd-2019-103

    Article  Google Scholar 

  • Matheou G (2016) Numerical discretization and subgrid-scale model effects on large-eddy simulations of a stable boundary layer. Q J R Meteorol Soc 142:3050–3062

    Google Scholar 

  • Matheou G, Chung D (2012) Direct numerical simulation of stratified turbulence. Phys Fluids 24:091106

    Google Scholar 

  • Matheou G, Chung D (2014) Large-eddy simulation of stratified turbulence. Part II: application of the stretched-vortex model to the atmospheric boundary layer. J Atmos Sci 71:45–66

    Google Scholar 

  • Miller NE, Stoll R (2013) Surface heterogeneity effects on regional-scale fluxes in the stable boundary layer: aerodynamic roughness length transition. Boundary-Layer Meteorol 149:277–301

    Google Scholar 

  • Morinishi Y, Lund TS, Vasilyev OV, Moin P (1998) Fully conservative higher order finite difference schemes for incompressible flow. J Comput Phys 143:90–124

    Google Scholar 

  • Noilhan J, Planton S (1989) A simple parameterization of land surface processes for meteorological models. Mon Weather Rev 117:536–549

    Google Scholar 

  • Rabier F, Bouchard A, Brun E, Doerenbecher A, Guedj S, Guidard V, Karbou F, Peuch V-H, El Amraoui L, Puech D, Genthon C, Picard G, Town M, Hertzog A, Vial F, Cocquerez P, Cohn SA, Hock T, Fox J, Cole H, Parsons D, Powers J, Romberg K, VanAndel J, Deshler T, Mercer J, Haase JS, Avallone L, Kalnajs L, Mechoso CR, Tangborn A, Pellegrini A, Frenot Y, Thépaut J-N, McNally A, Basamo G, Steinle P (2010) The concordiasi project. Antarctica Bull Am Meteorol Soc 91:69–86

    Google Scholar 

  • Randall D, Khairoutdinov M, Arakawa A, Grabowski W (2003) Breaking the cloud parameterization deadlock. Bull Am Meteorol Soc 84:1547–1564

    Google Scholar 

  • Ricaud P, Genthon C, Durand P, Attié J, Carminati F, Canut G, Vanacker J, Moggio L, Courcoux Y, Pellegrini A, Rose T (2012) Summer to winter diurnal variabilities of temperature and water vapour in the lowermost troposphere as observed by HAMSTRAD over Dome C, Antarctica. Boundary-Layer Meteorol 143:227–259

    Google Scholar 

  • Sandu I, Beljaars A, Bechtold P, Mauritsen T, Balsamo G (2013) Why is it so difficult to represent stably stratified conditions in numerical weather prediction (NWP) models? J Adv Model Earth Syst 5:117–133

    Google Scholar 

  • Smagorinsky J (1963) General circulation experiments with the primitive equations I: the basic experiment. Mon Weather Rev 91:99–164

    Google Scholar 

  • Sullivan PP, Weil JC, Patton EG, Jonker HJJ, Mironov DV (2016) Turbulent Winds And Temperature Fronts In Large-Eddy Simulations Of The Stable Atmospheric Boundary Layer. J Atmos Sci 73:1815–1840

    Google Scholar 

  • Sun J, Mahrt L, Banta RM, Pichugina YL (2012) Turbulence regimes and turbulence intermittency in the stable boundary layer during CASES-99. J Atmos Sci 69:338–351

    Google Scholar 

  • Svensson G, Holtslag AAM, Kumar V, Mauritsen T, Steenveld G-J, Angevine WM, Bazile E, Beljaars A, de Bruijn EIF, Cheng A, Conangla L, Cuxart J, Ek M, Falk MJ, Freedman F, Kitagawa H, Larson VE, Lock A, Mailhot J, Masson V, Park S, Pleim J, Soderberg S, Weng W, Zampieri M (2011) Evaluation of the diurnal cycle in the atmospheric boundary layer over land as represented by a variety of single-column models: the second GABLS experiment. Boundary-Layer Meteorol 140:177–206

    Google Scholar 

  • Van de Wiel BJH, Moene AF, Jonker HJJ, Baas P, Basu S, Donda JMM, Sun J, Holtslag AAM (2012) The minimum wind speed for sustainable turbulence in the nocturnal boundary layer. J Atmos Sci 69:3116–3127

    Google Scholar 

  • van der Linden SA, Edwards JM, van Heerwaarden CC, Vignon E, Genthon C, Petenko I, Baas P, Jonker HJJ, van de Wiel BJH (2019) Large-Eddy simulations of the steady wintertime antarctic boundary layer. Boundary-Layer Meteorol 173:165–192

    Google Scholar 

  • van Heerwaarden CC, van Stratum BJH, Heus T, Gibbs JA, Fedorovich E, Mellado JP (2017) MicroHH 1.0: a computational fluid dynamics code for direct numerical simulation and large-eddy simulation of atmospheric boundary layer flows. Geosci Model Dev 10:3145–3165

    Google Scholar 

  • Van Stratum BJ, Stevens B (2015) The influence of misrepresenting the nocturnal boundary layer on idealized daytime convection in large-eddy simulation. J Adv Model Earth Syst 7:423–436

    Google Scholar 

  • Vignon E, van de Wiel BJH, van Hooijdonk IGS, Genthon C, van der Linden SJA, van Hooft A, Baas P, Maurel W, Traullé O, Casasanta G (2017a) Stable boundary-layer regimes at Dome C, Antarctica: observation and analysis. Q J R Meteorol Soc 143:1241–1253

    Google Scholar 

  • Vignon E, Genthon C, Barral H, Amory C, Picard G, Gallee H, Casasanta G, Argentini S (2017b) Momentum- and heat-flux parametrization at Dome C, Antarctica: a sensitivity study. Boundary-Layer Meteorol 162:341–367

    Google Scholar 

  • Vignon E, Hourdin F, Genthon C, Gallée H, Bazile E, Lefebvre M-P, Madeleine J-B, Van de Wiel BJH (2017c) Antarctic boundary layer parametrization in a general circulation model: 1-D simulations facing summer observations at Dome C. J Geophys Res Atmos 122:6818–6843

    Google Scholar 

  • Walesby KT, Beare RJ (2016) Parametrizing the Antarctic stable boundary layer: synthesizing models and observations. Q J R Meteorol Soc 142:2373–2385

    Google Scholar 

  • Wicker LJ, Skamarock WC (2002) Time-splitting methods for elastic models using forward time schemes. Mon Weather Rev 130:2088–2097

    Google Scholar 

  • Wilson DK (2001) An alternative function for the wind and temperature gradients in unstable surface layers. Boundary-Layer Meteorol 99:151–158

    Google Scholar 

  • Zilitinkevich SS, Hunt JCR, Esau IN, Grachev AA, Lalas DP, Akylas E, Tombrou M, Fairall CW, Fernando HJS, Baklanov AA, Joffre SM (2006) The influence of large convective eddies on the surface-layer turbulence. Q J R Meteorol Soc 132:1423–1456

    Google Scholar 

Download references

Acknowledgements

The first author would like to acknowledge E Coppa and B Alaoui who worked on a small internship on the first analysis of the intercomparison of the experiment 3 runs. The authors are also grateful to P LeMoigne, O Traullé, F Favot and W Maurel for their help in preparation of the GABLS4 intercomparaison and thanks B Holtslag for its promotion, and B. Holtslag and B Van de Wiel for the numerous and constructive discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fleur Couvreux.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1: Initial Conditions

Appendix 1: Initial Conditions

Initial conditions and forcing for experiments 1, 2 and 3 of the GABLS4 intercomparison are provided in Table 5.

Table 5 Description of the initial profiles and forcing for the runs initialized at 0000 UTC or at 1000 UTC as well as the time series of the prescribed surface temperature

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Couvreux, F., Bazile, E., Rodier, Q. et al. Intercomparison of Large-Eddy Simulations of the Antarctic Boundary Layer for Very Stable Stratification. Boundary-Layer Meteorol 176, 369–400 (2020). https://doi.org/10.1007/s10546-020-00539-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-020-00539-4

Keywords

Navigation