Skip to main content
Log in

Stable biphasic interfaces for open microfluidic platforms

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

We present an open microfluidic platform that enables stable flow of an organic solvent over an aqueous solution. The device features apertures connecting a lower aqueous channel to an upper solvent compartment that is open to air, enabling easy removal of the solvent for analysis. We have previously shown that related open biphasic systems enable steroid hormone extraction from human cells in microscale culture and secondary metabolite extraction from microbial culture; here we build on our prior work by determining conditions under which the system can be used with extraction solvents of ranging polarities, a critical feature for applying this extraction platform to diverse classes of metabolites. We developed an analytical model that predicts the limits of stable aqueous-organic interfaces based on analysis of Laplace pressure. With this analytical model and experimental testing, we developed generalized design rules for creating stable open microfluidic biphasic systems with solvents of varying densities, aqueous-organic interfacial tensions, and polarities. The stable biphasic interfaces afforded by this device will enable on-chip extraction of diverse metabolite structures and novel applications in microscale biphasic chemical reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • D.D. Agonafer, K. Lopez, J.W. Palko, Y. Won, J.G. Santiago, K.E. Goodson, J. Colloid Interface Sci. 455, 1–5 (2015)

    Article  Google Scholar 

  • B. Ahmed, D. Barrow, T. Wirth, Adv. Synth. Catal. 348, 1043–1048 (2006)

    Article  Google Scholar 

  • W. Apostoluk, J. Drzymała, J. Colloid Interface Sci. 262, 483–488 (2003)

    Article  Google Scholar 

  • L.J. Barkal, A.B. Theberge, C.-J. Guo, J. Spraker, L. Rappert, J. Berthier, K.A. Brakke, C.C.C. Wang, D.J. Beebe, N.P. Keller, E. Berthier, Nat. Commun. 7, 10610 (2016)

    Article  Google Scholar 

  • E. Berthier, D.J. Beebe, Lab Chip 7, 1475–1478 (2007)

    Article  Google Scholar 

  • J. Berthier, K.A. Braake, The Physics of Microdroplets, Wiley-scrivener, 1 ed. Beverly 2012, 105–142

  • J. Berthier, F. Loe-Mi, V.-M. Tran, S. Schoumacker, F. Mittler, G. Marchand, N. Sarrut, J. Colloid Interface Sci. 338, 296–303 (2009)

    Article  Google Scholar 

  • E. Berthier, J. Warrick, B.P. Casavant, D.J. Beebe, Lab Chip 11, 2060–2065 (2011)

    Article  Google Scholar 

  • J. Berthier, K.A. Brakke, E. Berthier, Open Microfluidics (Wiley-Scrivener, Beverly, 2016), p. 17

    Book  Google Scholar 

  • J.R. Burns, C. Ramshaw, Lab Chip 1, 10–15 (2001)

    Article  Google Scholar 

  • G. Carlucci, J. Chromatogr. A 812, 343–367 (1998)

    Article  Google Scholar 

  • B.P. Casavant, E. Berthier, A.B. Theberge, J. Berthier, S.I. Montanez-Sauri, L.L. Bischel, K. Brakke, C.J. Hedman, W. Bushman, N.P. Keller, D.J. Beebe, Proc. Natl. Acad. Sci. U. S. A. 110, 10111–10116 (2013)

    Article  Google Scholar 

  • P.-G. de Gennes, F. Brochart-Wyart, D. Quere, Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves (Springer, New York City, 2004), pp. 69–85

    Book  Google Scholar 

  • R. Draisci, C. Marchiafava, L. Palleschi, P. Cammarata, S. Cavalli, J. Chromatogr. B: Biomed. Sci. Appl. 753, 217–223 (2001)

    Article  Google Scholar 

  • A.A. Freitas, F.H. Quina, F.A.J. Carroll, Phys. Chem. B 101, 7488–7493 (1997)

    Article  Google Scholar 

  • H. Hisamoto, T. Horiuchi, K. Uchiyama, M. Tokeshi, A. Hibara, T. Kitamori, Anal. Chem. 73, 5551–5556 (2001)

    Article  Google Scholar 

  • C. Hsu, C. Chen, A. Folch, Lab Chip 4, 420–424 (2004)

    Article  Google Scholar 

  • G. Kaigala, R. Lovchik, E. Delamarche, Angew. Chem. Int. Ed. 51, 11224–11240 (2012)

    Article  Google Scholar 

  • D.K. Lloyd, J. Chromatogr. A. 735, 29–42 (1996)

    Article  Google Scholar 

  • P. Mary, V. Studer, P. Tabeling, Anal. Chem. 80, 2680–2687 (2008)

    Article  Google Scholar 

  • A.A. Maryott, E.R. Smith, Table of dielectric constants of pure liquids (National Bureau of Standards, Washington D.C., 1951), p. 1

    Book  Google Scholar 

  • I. Meyvantsson, J. Warrick, S. Hayes, A. Skoien, D.J. Beebe, Lab Chip 8, 717–724 (2008)

    Article  Google Scholar 

  • G.H. Morrison, Anal. Chem. 22, 1388–1393 (1950)

    Article  Google Scholar 

  • T. Ondarçuhu, J. Phys. II 5, 227–241 (1995)

    Google Scholar 

  • S. Pedersen-Bjergaard, K.E. Rasmussen, Anal. Chem. 71, 2650–2656 (1999)

    Article  Google Scholar 

  • S.X. Peng, T.M. Branch, S.L. King, Anal. Chem. 73, 708–714 (2001)

    Article  Google Scholar 

  • M. Rhee, M. Burns, Langmuir 24, 590–601 (2008)

    Article  Google Scholar 

  • J. Rydberg, M. Cox, C. Musikas, G. Choppin (eds.), Solvent Extraction Principles and Practice, Revised and Expanded (CRC Press, New York, 2004)

    Google Scholar 

  • Sigma-Aldrich, https://www.sigmaaldrich.com/chemistry/solvents/chloroform-center.html. Accessed 17 Oct 2018.

  • J. Sun, X. Xu, C. Wang, T. You, Electrophoresis 29, 3999–4007 (2008)

    Article  Google Scholar 

  • D.W. Tedder, in In Albright’s Chemical Engineering Handbook. Liquid-Liquid Extraction (CRC Press, New York, 2008), pp. 709–−735

    Chapter  Google Scholar 

  • A.B. Theberge, G. Whyte, M. Frenzel, L. Fidalgo, R. Wootton, W. Huck, Chem. Commun. (41), 6225–6227 (2009)

  • P. Thurgood, S. Baratchi, C. Szydzik, A. Mitchella, K. Khoshmanesh, Lab Chip 17, 2517–2527 (2017)

    Article  Google Scholar 

  • Y. Uozumi, Y. Yamada, T. Beppu, N. Fukuyama, M. Ueno, T. Kitamori, J. Am. Chem. Soc. 128, 15994–15995 (2006)

    Article  Google Scholar 

  • G. Walker, D.J. Beebe, Lab Chip 2, 131–134 (2002)

    Article  Google Scholar 

  • M.J.M. Wells, S. Mitra, Sample Preparation Techniques in Analytical Chemistry. Hoboken, 37–74 (2003)

Download references

Acknowledgements

This work was funded by the University of Washington, NIH K12DK100022, and NIH R01CA185251 (JY). We gratefully acknowledge Dr. David Beebe for helpful discussions and the Microtechnology Medicine and Biology (MMB) laboratory for supporting preliminary experiments that laid the foundation for this work. We thank Alexander Howard and Drs. Mark Scalf and Lloyd Smith for their contributions to preliminary experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashleigh B. Theberge.

Ethics declarations

Conflicts of interest

The authors acknowledge the following potential conflicts of interest in companies pursuing open microfluidic technologies: JY: Stacks to the Future, LLC, EB: Tasso, Inc., Salus Discovery, LLC, and Stacks to the Future, LLC, ABT: Stacks to the Future, LLC.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 14993 kb)

ESM 2

(MPG 24712 kb)

ESM 3

(MPG 37540 kb)

ESM 4

(MPG 19174 kb)

ESM 5

(MPG 89616 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, U.N., Berthier, J., Yu, J. et al. Stable biphasic interfaces for open microfluidic platforms. Biomed Microdevices 21, 16 (2019). https://doi.org/10.1007/s10544-019-0367-z

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-019-0367-z

Keywords

Navigation