Skip to main content
Log in

Internalization and cytotoxicity analysis of silicon-based microparticles in macrophages and embryos

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Microchips can be fabricated, using semiconductor technologies, at microscopic level to be introduced into living cells for monitoring of intracellular parameters at a single cell level. As a first step towards intracellular chips development, silicon and polysilicon microparticles of controlled shape and dimensions were fabricated and introduced into human macrophages and mouse embryos by phagocytosis and microinjection, respectively. Microparticles showed to be non-cytotoxic for macrophages and were found to be localized mainly inside early endosomes, in tight association with endosomal membrane, and more rarely in acidic compartments. Embryos with microinjected microparticles developed normally to the blastocyst stage, confirming the non-cytotoxic effect of the particles. In view of these results silicon and polysilicon microparticles can serve as the frame for future intracellular chips development and this technology opens the possibility of real complex devices to be used as sensors or actuators inside living cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CLSM:

confocal laser scanning microscopy

FIB:

focus ion beam

ICCs:

IntraCellular Chips

MEMS:

MicroElectroMechanical Systems

MP:

microparticle

NP:

nanoparticle

PF-MP:

polystyrene fluorescent microspheres

pSi-MP:

polysilicon MP

SEM:

scanning electron microscope

Si-MP:

Silicon MP

TEM:

transmission electron microscopy

References

  • S. Abes, D. Williams, P. Prevot, A. Thierry, M.J. Gait, B. Lebleu, J. Control. Release 110(3), 595 (2006)

    Article  Google Scholar 

  • G. Bao, S. Suresh, Nat. Mater. 2(11), 715 (2003)

    Article  Google Scholar 

  • J.D. Biggers, L.K. McGinnis, M. Raffin, Biol. Reprod. 63(1), 281 (2000)

    Article  Google Scholar 

  • T.P. Burg, M. Godin, S.M. Knudsen, W. Shen, G. Carlson, J.S. Foster, K. Babcock, S.R. Manalis, Nature 446(7139), 1066 (2007)

    Article  Google Scholar 

  • J. Choi, Q. Zhang, V. Reipa, N.S. Wang, M.E. Stratmeyer, V.M. Hitchins, P.L. Goering, J. Appl. Toxicol. 29(1), 52 (2009)

    Article  Google Scholar 

  • S.E. Cross, Y.S. Jin, J. Rao, J.K. Gimzewski, Nat. Nanotechnol. 2(12), 780 (2007)

    Article  Google Scholar 

  • C. de Chastellier, L. Thilo, Cell. Microbiol. 8(2), 242 (2006)

    Article  Google Scholar 

  • S. Faraasen, J. Voros, G. Csucs, M. Textor, H.P. Merkle, E. Walter, Pharm. Res. 20(2), 237 (2003)

    Article  Google Scholar 

  • C. Foged, B. Brodin, S. Frokjaer, A. Sundblad, Int. J. Pharm. 298(2), 315 (2005)

    Article  Google Scholar 

  • J. Fritz, M.K. Baller, H.P. Lang, H. Rothuizen, P. Vettiger, E. Meyer, H.J. Guntherodt, C. Gerber, J.K. Gimzewski, Science 288(5464), 316 (2000)

    Article  Google Scholar 

  • A.J. Gomes, A.S. Faustino, A.E.H. Machado, M.E.D. Zaniquelli, T.D. Rigoletto, C.N. Lunardi, L.O. Lunardi, Drug Deliv. 13(6), 447 (2006)

    Article  Google Scholar 

  • D.S. Gray, J.L. Tan, J. Voldman, C.S. Chen, Biosens. Bioelectron. 19(12), 1763 (2004)

    Article  Google Scholar 

  • J.K. Hsiao, C.P. Tsai, T.H. Chung, Y. Hung, M. Yao, H.M. Liu, C.Y. Mou, C.S. Yang, Y.C. Chen, D.M. Huang, Small 4(9), 1445 (2008)

    Article  Google Scholar 

  • K.K. Huynh, E.L. Eskelinen, C.C. Scott, A. Malevanets, P. Saftig, S. Grinstein, EMBO J. 26(2), 313 (2007)

    Article  Google Scholar 

  • A.M. Javier, O. Kreft, M. Semmling, S. Kempter, A.G. Skirtach, O.T. Bruns, P. del Pino, M.F. Bedard, J. Raedler, J. Kaes, C. Plank, G.B. Sukhorukov, W.J. Parak, Adv. Mater. 20(22), 4281 (2008)

    Article  Google Scholar 

  • P.B. Kang, A.K. Azad, J.B. Torrelles, T.M. Kaufman, A. Beharka, E. Tibesar, L.E. DesJardin, L.S. Schlesinger, J. Exp. Med. 202(7), 987 (2005)

    Article  Google Scholar 

  • H. Lee, Y. Liu, D. Ham, R.M. Westervelt, Lab Chip 7(3), 331 (2007)

    Article  Google Scholar 

  • J. Lu, M. Liong, J.I. Zink, F. Tamanoi, Small 3(8), 1341 (2007)

    Article  Google Scholar 

  • J.S. Mcdowell, R.J. Swanson, M. Maloney, L. Veeck, J. In Vitro Fert. Embryo Transf. 5(3), 144 (1988)

    Article  Google Scholar 

  • Y. Pan, S. Neuss, A. Leifert, M. Fischler, F. Wen, U. Simon, G. Schmid, W. Brandau, W. Jahnen-Dechent, Small 3, 1941 (2007)

    Article  Google Scholar 

  • C.E. Pedraza, L.G. Nikolcheva, M.T. Kaartinen, J.E. Barralet, M.D. McKee, Bone 43(4), 708 (2008)

    Article  Google Scholar 

  • S.C.W. Richardson, K.L. Wallom, E.L. Ferguson, S.P.E. Deacon, M.W. Davies, A.J. Powell, R.C. Piper, R. Duncan, J. Control. Release 127(1), 1 (2008)

    Article  Google Scholar 

  • G. Shekhawat, S.H. Tark, V.P. Dravid, Science 311(5767), 1592 (2006)

    Article  Google Scholar 

  • I. Slowing, B.G. Trewyn, V.S.Y. Lin, J. Am. Chem. Soc. 128(46), 14792 (2006)

    Article  Google Scholar 

  • I.I. Slowing, B.G. Trewyn, V.S.Y. Lin, J. Am. Chem. Soc. 129(28), 8845 (2007)

    Article  Google Scholar 

  • E. Tasciotti, X.W. Liu, R. Bhavane, K. Plant, A.D. Leonard, B.K. Price, M.M.C. Cheng, P. Decuzzi, J.M. Tour, F. Robertson, M. Ferrari, Nat. Nanotechnol. 3(3), 151 (2008)

    Article  Google Scholar 

  • L. Thiele, B. Rothen-Rutishauser, S. Jilek, H. Wunderli-Allenspach, H.P. Merkle, E. Walter, J. Control. Release 76(1–2), 59 (2001)

    Article  Google Scholar 

  • L. Thiele, H.P. Merkle, E. Walter, Pharm. Res. 20(2), 221 (2003)

    Article  Google Scholar 

  • A.P.F. Trombone, C.L. Silva, L.P. Almeida, R.S. Rosada, K.M. Lima, C. Oliver, M.C. Jamur, A.A. Coelho-Castelo, Genet. Vaccines Ther. 5, 9 (2007)

    Article  Google Scholar 

  • H. Vallhov, S. Gabrielsson, M. Stromme, A. Scheynius, A.E. Garcia-Bennett, Nano Lett. 7(12), 3576 (2007)

    Article  Google Scholar 

  • N. van der Wel, D. Hava, D. Houben, D. Fluitsma, M. van Zon, J. Pierson, M. Brenner, P.J. Peters, Cell 129(7), 1287 (2007)

    Article  Google Scholar 

  • A. Verma, O. Uzun, Y.H. Hu, Y. Hu, H.S. Han, N. Watson, S.L. Chen, D.J. Irvine, F. Stellacci, Nat. Mater. 7(7), 588 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Spanish government under the MINAHE 2 (TEC2005-07996-C02-01) and the MINAHE 3 (TEC2008-06883-C03-01 and TEC2008-06883-C03-03). We also wish to thank the MEC-GICSERV program, the SGR program from the Catalan government (2005SGR-00437), the IBM-CNM clean room staff, and the staff at the Servei de Microscopia at Universitat Autònoma Barcelona.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carme Nogués.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Fig. S1

Shows a schematic representation of the fabrication process of Si- and pSi-MPs. Video 1 shows a FIB sectioning of a macrophage with an internalized Si-MP. Video 2 presents a xyz reconstruction of consecutive focal planes of a macrophage with an internalized pSi-MP. Video S3 provides the microinjection process of a pSi-MP into the cytoplasm of a mouse one-cell embryo. (GIF 132 kb)

High Resolution Image

(TIFF 3724 kb)

(AVI 2962 kb)

Video 2

(AVI 8476 kb)

(AVI 2005 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernández-Rosas, E., Gómez, R., Ibañez, E. et al. Internalization and cytotoxicity analysis of silicon-based microparticles in macrophages and embryos. Biomed Microdevices 12, 371–379 (2010). https://doi.org/10.1007/s10544-009-9393-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-009-9393-6

Keywords

Navigation