Skip to main content
Log in

Reconfigurable microfluidic integration of a dual-beam laser trap with biomedical applications

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

A dual-beam fiber laser trap, termed the optical stretcher when used to deform objects, has been combined with a capillary-based microfluidic system in order to serially trap and deform biological cells. The design allows for control over the size and position of the trap relative to the flow channel. Data is recorded using video phase contrast microscopy and is subsequently analyzed using a custom edge fitting routine. This setup has been regularly used with measuring rates of 50–100 cells/h. One such experiment is presented to compare the distribution of deformability found within a normal epithelial cell line to that of a cancerous one. In general, this microfluidic optical stretcher can be used for the characterization of cells by their viscoelastic signature. Possible applications include the cytological diagnosis of cancer and the gentle and marker-free sorting of stem cells from heterogeneous populations for therapeutic cell-based approaches in regenerative medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • H. Andersson, A. van den Berg, Sens. Actuators, B 92, 315–325 (2003)

    Article  Google Scholar 

  • A. Ashkin, Phys. Rev. Lett. 24, 156–159 (1970)

    Article  Google Scholar 

  • A. Ashkin, J.M. Dziedzic, Phys. Rev. Lett. 30(4), 139–142 (1973)

    Article  Google Scholar 

  • P.B. Bareil, Y.L. Sheng, A. Chiou, Opt. Express 14(25), 12503–12509 (2006)

    Article  Google Scholar 

  • P.Y. Chiou, A.T. Ohta, M.C. Wu, Nature 436, 370–372 (2005)

    Article  Google Scholar 

  • H.-P. Chou, C. Spence, A. Scherer, S. Quake, Proc. Natl. Acad. Sci. U. S. A. 96, 11–13 (1999)

    Article  Google Scholar 

  • A. Constable, J. Kim, J. Mervis, F. Zarinetchi, M. Prentiss, Opt. Lett. 18(21), 1867–1869 (1993)

    Google Scholar 

  • S. Cran-McGreehin, T.F. Krauss, K. Dholakia, Lab Chip 6(9), 1122–1124 (2006)

    Article  Google Scholar 

  • S. Fiedler, S.G. Shirley, T. Schnelle, G. Fuhr, Anal. Chem. 70, 1909–1915 (1998)

    Article  Google Scholar 

  • F.-U. Gast, P.S. Dittrich, P. Schwille, M. Weigel, M. Mertig, J. Opitz, U. Queitsh, S. Diez, B. Lincoln, F. Wottawah, S. Schinkinger, J. Guck, J. Käs, J. Smolinski, K. Salchert, C. Werner, C. Duschl, M.S. Jäger, K. Uhlig, P. Geggier, S. Howitz, Microfluid. Nanofluid. 2(1), 21–36 (2006)

    Article  Google Scholar 

  • R.C. Gauthier, M. Friesen, T. Gerrard, W. Hassouneh, P. Koziorowski, D. Moore, K. Oprea, S. Uttamalingam, Appl. Opt. 42, 1610–1619 (2003)

    Article  Google Scholar 

  • J. Guck, R. Ananthakrishnan, H. Mahmood, T.J. Moon, C.C. Cunningham, J. Käs, Biophys. J. 81, 767–784 (2001)

    Google Scholar 

  • J. Guck, R. Ananthakrishnan, T.J. Moon, C.C. Cunningham, J. Käs, Phys. Rev. Lett. 84(23), 5451–5454 (2000)

    Article  Google Scholar 

  • J. Guck, H. Erickson, D. Mitchell, M. Romeyke, S. Schinkinger, F. Wottawah, B. Lincoln, J. Käs, S. Ulvick, C. Bilby, Biophys. J. 88, 5 (2005)

    Article  Google Scholar 

  • P.R.T. Jess, V. Garcés-Chávez, D. Smith, M. Mazilu, L. Paterson, A. Riches, C.S. Herrington, W. Sibbett, K. Dholakia, Opt. Express 14, 5779–5791 (2006)

    Article  Google Scholar 

  • M.D. Johnson, J.A. Torri, M.E. Lippman, R.B. Dickson, Exp. Cell Res. 247, 105–113 (1999)

    Article  Google Scholar 

  • G. Knöner, A. Ratnapala, T.A. Nieminen, C.J. Vale, N.R. Heckenberg, H. Rubinsztein-Dunlop, Lab Chip 6, 1545–1547 (2006)

    Article  Google Scholar 

  • B. Lincoln, H.M. Erickson, S. Schinkinger, F. Wottawah, D. Mitchell, S. Ulvick, C. Bilby, J. Guck, Cytometry, Part A 59, 203–209 (2004)

    Article  Google Scholar 

  • H. Lee, A.M. Purdon, R.M. Westervelt, Appl. Phys. Lett. 85(6), 1063–1065 (2004)

    Article  Google Scholar 

  • Y.P. Liu, C. Li, K.K. Liu, A.C.K. Lai, J. Biomech. Eng. – Trans. ASME 128(6), 830–836 (2006)

    Article  Google Scholar 

  • E.R. Lyons, G.J. Sonek, Appl. Phys. Lett. 66, 1584–1586 (1995)

    Article  Google Scholar 

  • M.P. MacDonald, G.C. Spalding, K. Dholakla, Nature 426, 421–424 (2003)

    Article  Google Scholar 

  • M.J. Madou, Fundamentals of Microfabrication: The Science of Miniaturization (CRC Press, Boca Raton, FL, 2002), pp. 3–9

    Google Scholar 

  • S. Park, D. Koch, R. Cardenas, J. Käs, C.K. Shih, Biophys. J. 89, 4330–4342 (2005)

    Article  Google Scholar 

  • G. Roosen, C. Imbert, Phys. Lett., A 59, 6–8 (1976)

    Article  Google Scholar 

  • E. Sidick, S.D. Collins, A. Knoesen, Appl. Opt. 36, 6423–6433 (1997)

    Article  Google Scholar 

  • A.E. Siegman, Lasers (University Science Books, Mill Valley, CA, 1986), pp. 581–589

    Google Scholar 

  • W. Singer, M. Frick, T. Haller, S. Bernet, M. Ritsch-Marte, P. Dietl, Biophys. J. 84, 1344–1351 (2003)

    Article  Google Scholar 

  • K.J. VanVliet, G. Bao, S. Suresh, Acta Mater. 51, 5881–5905 (2003)

    Article  Google Scholar 

  • M.T. Wei, K.T. Yang, A. Karmenyan, A. Chiou, Opt. Express 14(7), 3056–3064 (2006)

    Article  Google Scholar 

  • F. Wottawah, S. Schinkinger, B. Lincoln, R. Ananthakrishnan, M. Romeyke, J. Guck, J. Käs, Phys. Rev. Lett. 94(9), 98103 (2005a)

    Article  Google Scholar 

  • F. Wottawah, S. Schinkinger, B. Lincoln, S. Ebert, K. Müller, F. Sauer, J. Guck, Acta Biomater. 1(3), 263–271 (2005b)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Robert Austin, Grant Willson, Coley Chappell, Chieze Ibeneche, Benton Pahlka, Thomas Schnelle, Torsten Müller, Gabriele Gradl, Steffen Howitz, Allen Ehrlicher, and Josef Käs for technical assistance, advice, and helpful discussions. Financial support was provided by an R&D grant (SAB, Project 9889/1519) from the European Fund for Regional Development (EFRE) 2000–2006 and the state of Saxony.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jochen Guck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lincoln, B., Schinkinger, S., Travis, K. et al. Reconfigurable microfluidic integration of a dual-beam laser trap with biomedical applications. Biomed Microdevices 9, 703–710 (2007). https://doi.org/10.1007/s10544-007-9079-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-007-9079-x

Keywords

Navigation