Skip to main content
Log in

A review on numerical schemes for solving a linear stochastic oscillator

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

In recent years several numerical methods to solve a linear stochastic oscillator with one additive noise have been proposed. The usual aim of these approaches was to preserve different long time properties of the oscillator solution. In this work we collect these properties, namely, symplecticity, linear growth of its second moment and asymptotic oscillation around zero. We show that these features can be studied in terms of the coefficients of the matrices that appear in the linear recurrence obtained when the schemes are applied to the oscillator. We use this study to compare the numerical schemes as well as to propose new schemes improving some properties of classical methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Cohen, D.: On the numerical discretisation of stochastic oscillators. Math. Comput. Simul. 82(8), 1478–1495 (2012)

    Article  MATH  Google Scholar 

  2. Hong, J., Scherer, R., Wang, L.: Midpoint rule for a linear stochastic oscillator with additive noise. Neural Parallel Sci. Comput. 14(1), 1–12 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  3. Hong, J., Scherer, R., Wang, L.: Predictor-corrector methods for a linear stochastic oscillator with additive noise. Math. Comput. Model. 46, 738–764 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  4. Itô, K.: Introduction to Probability Theory. Cambridge University Press, Cambridge (1984)

    MATH  Google Scholar 

  5. Ma, Q., Ding, D., Ding, X.: Symplectic conditions and stochastic generating functions of stochastic Runge–Kutta methods for stochastic Hamiltonian systems with multiplicative noise. Appl. Math. Comput. 219, 635–643 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  6. Milstein, G.N., Repin, Y.M., Tretyakov, M.V.: Symplectic integration of Hamiltonian systems with additive noise. SIAM J. Numer. Anal. 39, 2066–2088 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  7. Markus, L., Weerasinghe, A.: Stochastic oscillators. J. Differ. Equ. 71(2), 288–314 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  8. Schurz, H.: New stochastic integrals, oscillation theorems and energy identities. Commun. Appl. Anal. 13(2), 181–194 (2009)

    MATH  MathSciNet  Google Scholar 

  9. Stømmen, A.H., Higham, D.J.: Numerical simulation of a linear stochastic oscillator with additive noise. Appl. Numer. Math. 51(1), 89–99 (2004)

    Article  MathSciNet  Google Scholar 

  10. Tocino, A.: On preserving long-time features of a linear stochastic oscillator. BIT 47, 189–196 (2007)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors thank the reviewers for their helpful comments. They are specially grateful to the referee who helped to improve the structure of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Senosiain.

Additional information

Communicated by Anne Kværnø.

M. J. Senosiain was supported by MINECO under Project MTM2012-38445. M. J. Senosiain and A. Tocino were supported by a grant of Vicerrectorado de Investigación of Salamanca University.

Appendix

Appendix

Consider the recurrence (2.1) with initial conditions \(x_0,\,y_0\) obtained when the PEM method is applied to the linear stochastic oscillator (1.1). The scheme may be written

$$\begin{aligned} \begin{pmatrix} x_{n}\\ y_{n} \end{pmatrix}=A^n \begin{pmatrix} x_0\\ y_0 \end{pmatrix} +\alpha \Delta W_0 A^{n-1} \begin{pmatrix} 0\\ 1 \end{pmatrix}+\alpha \,\Delta W_1A^{n-2} \begin{pmatrix} 0\\ 1 \end{pmatrix}+\cdots +\alpha \,\Delta W_{n-1} \begin{pmatrix} 0\\ 1 \end{pmatrix} \end{aligned}$$

where \(A\) is given in (3.1). Suppose \(\Delta <2\) and denote by

$$\begin{aligned} \lambda =1-\frac{\Delta ^2}{2}+ i\,\Delta \,\frac{\sqrt{4-\Delta ^2}}{2} \end{aligned}$$

and \(\bar{\lambda }\) the eigenvalues of \(A\). Since \(|\lambda |=1\) we write \(\lambda =e^{i\theta }\), \(0<\theta <\pi \). It can be seen that

$$\begin{aligned} A^n=\begin{pmatrix} \cos (n\theta )+\frac{\Delta }{\sqrt{4-\Delta ^2}}\sin (n\theta ) &{} \frac{2}{\sqrt{4-\Delta ^2}}\sin (n\theta )\\ -\frac{2}{\sqrt{4-\Delta ^2}}\sin (n\theta ) &{} \cos (n\theta )-\frac{\Delta }{\sqrt{4-\Delta ^2}}\sin (n\theta ) \end{pmatrix}. \end{aligned}$$

If \(\Vert \cdot \Vert \) denotes the Euclidean vector norm, we have

$$\begin{aligned} \text {E}[x_n^2+y_n^2]=\text {E}\left\| \begin{pmatrix} x_n\\ y_n \end{pmatrix}\right\| ^2=\left\| A^n \begin{pmatrix} x_0\\ y_0 \end{pmatrix}\right\| ^2+\alpha ^2\Delta \sum _{j=0}^{n-1}\left\| A^j \begin{pmatrix} 0\\ 1 \end{pmatrix}\right\| ^2. \end{aligned}$$
(7.1)

Since

$$\begin{aligned} \begin{aligned} \left\| A^n\begin{pmatrix} x_0\\ y_0\end{pmatrix}\right\| ^2=&\ (x_0^2+y_0^2)\left( 1+\frac{2\Delta ^2}{4-\Delta ^2}\sin ^2(n\theta )\right) + (x_0^2-y_0^2)\frac{\Delta }{\sqrt{4-\Delta ^2}}\sin (2n\theta )\\&+x_0y_0\frac{8\Delta }{4-\Delta ^2}\,\sin ^2(n\theta ) \end{aligned} \end{aligned}$$

and

$$\begin{aligned} \left\| A^j\begin{pmatrix} 0\\ 1\end{pmatrix}\right\| ^2=1+\frac{2\Delta ^2}{4-\Delta ^2}\sin ^2(j\theta )-\frac{\Delta }{\sqrt{4-\Delta ^2}}\sin (2j\theta ), \end{aligned}$$

from (7.1) we get

$$\begin{aligned} \text {E}[x_n^2+y_n^2]&= x_0^2+y_0^2+\sin ^2(n\theta )\frac{2\Delta }{4-\Delta ^2}\left( (x_0^2+y_0^2)\Delta +4 x_0y_0\right) \\&+\frac{\Delta }{\sqrt{4-\Delta ^2}}(x_0^2-y_0^2)\sin (2n\theta )\\&+ \alpha ^2\Delta \sum _{j=0}^{n-1}\left( 1+\frac{2\Delta ^2}{4-\Delta ^2}\sin ^2(j\theta )-\frac{\Delta }{\sqrt{4-\Delta ^2}}\sin (2j\theta )\right) . \end{aligned}$$

Finally, using that

$$\begin{aligned}&\displaystyle \sum _{j=0}^{n-1}\sin ^2(j\theta )=\frac{n}{2}-\frac{\cos ((n-1)\theta )\sin (n\theta )}{2\sin (\theta )}, \\&\displaystyle \sum _{j=0}^{n-1}\sin (2j\theta )=\frac{\sin (n\theta )\sin \left( (n-1)\theta \right) }{\sin (\theta )}, \end{aligned}$$

we obtain

$$\begin{aligned} \text {E}[x_n^2+y_n^2]&= x_0^2+y_0^2+\frac{4}{4-\Delta ^2}\alpha ^2 n\Delta +\frac{2\Delta }{4-\Delta ^2}\sin ^2(n\theta )\left( \Delta (x_0^2+y_0^2)+4x_0y_0\right) \\&+\frac{\Delta }{\sqrt{4-\Delta ^2}}(x_0^2-y_0^2)\sin (2n\theta )\\&-\,\alpha ^2\left( \frac{\Delta ^2}{\sqrt{4-\Delta ^2}}\,\frac{\sin ((n-1)\theta )\sin (n\theta )}{\sin (\theta )}+\frac{\Delta ^3}{4-\Delta ^2}\frac{\cos ((n-1)\theta )\sin (n\theta )}{\sin (\theta )}\right) . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Senosiain, M.J., Tocino, A. A review on numerical schemes for solving a linear stochastic oscillator. Bit Numer Math 55, 515–529 (2015). https://doi.org/10.1007/s10543-014-0507-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-014-0507-z

Keywords

Mathematics Subject Classification (2010)

Navigation