Skip to main content
Log in

Reactive oxygen species, auxin and nitric oxide in metal-stressed roots: toxicity or defence

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

The presented review is a summary on the current knowledge about metal induced stress response in plants, focusing on the roles of reactive oxygen species, auxin and nitric oxide in roots. The article focuses mainly on the difference between defence and toxicity symptoms of roots during metal-induced stress. Nowadays, pollution of soils by heavy metals is a rapidly growing issue, which affects agriculture and human health. In order to deal with these problems, we must first understand the basic mechanisms and responses to environmental conditions in plants growing under such conditions. Studies so far show somewhat conflicting data, interpreting the same stress responses as both symptoms of defence and toxicity. Therefore, the aim of this review is to give a report about current knowledge of heavy metal-induced stress research, and also to differentiate between toxicity and defence, and outline the challenges of research, focusing on reactive oxygen and nitrogen species, auxin, and the interplay among them. There are still remaining questions on how reactive oxygen and nitrogen species, as well as auxin, can activate either symptoms of toxicity or defence, and adaptation responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abozeid A, Ying Z, Lin Y, Liu J, Zhang Z, Tang Z (2017) Ethylene improves root system development under cadmium stress by modulating superoxide anion concentration in Arabidopsis thaliana. Front Plant Sci 8:253

    Article  PubMed  PubMed Central  Google Scholar 

  • Alemayehu A, Zelinová V, Bočová B, Huttová J, Mistrík I, Tamás L (2015) Enhanced nitric oxide generation in root transition zone during the early stage of cadmium stress is required for maintaining root growth in barley. Plant Soil 390:213–222

    Article  CAS  Google Scholar 

  • Ali S, Bai P, Zeng F, Cai S, Shamsi IH, Qiu B, Wu F, Zhang G (2011) The ecotoxicological and interactive effects of chromium and aluminum on growth, oxidative damage and antioxidant enzymes on two barley genotypes differing in al tolerance. Environ Exp Bot 70:185–191

    Article  CAS  Google Scholar 

  • Aliaga ME, López-Alarcón C, Barriga G, Olea-Azar C, Speisky H (2010) Redox-active complexes formed during the interaction between glutathione and mercury and/or copper ions. J Inorg Biochem 104:1084–1090

    Article  CAS  PubMed  Google Scholar 

  • Arasimowicz-Jelonek M, Floryszak-Wieczorek J (2011) Understanding the fate of the peroxynitrite in plant cells–from physiology to pathophysiology. Phytochemistry 72:681–688

    Article  CAS  PubMed  Google Scholar 

  • Arasimowicz-Jelonek M, Floryszak-Wieczorek J, Deckert J, Rucinska-Sobkowiak R, Gzyl J, Pawlak-Sprada S, Abramowski D, Jelonek T, Gwóźdź EA (2012) Nitric oxide implication in cadmium-induced programmed cell death in roots and signaling response of yellow lupine plants. Plant Physiol Biochem 58:124–134

    Article  CAS  PubMed  Google Scholar 

  • Bai B, Bian H, Zeng Z, Hou N, Shi B, Wang J, Zhu M, Han N (2017) miR393-mediated auxin signaling regulation is involved in root elongation inhibition in response to toxic aluminum stress in barley. Plant Cell Physiol 58:426–439

    CAS  PubMed  Google Scholar 

  • Basu U, Good AG, Taylor GJ (2001) Transgenic Brassica napus plants overexpressing aluminium-induced mitochondrial manganese superoxide dismutase cDNA are resistant to aluminium. Plant, Cell Environ 24:1269–1278

    Article  CAS  Google Scholar 

  • Baxter A, Mittler R, Suzuki N (2014) ROS as key players in plant stress signalling. J Exp Bot 65:1229–1240

    Article  CAS  PubMed  Google Scholar 

  • Beligni MV, Lamattina L (1999) Nitric oxide counteracts cytotoxic processes mediated by reactive oxygen species in plant tissues. Planta 208:337–344

    Article  CAS  Google Scholar 

  • Beligni MV, Fath A, Bethke PC, Lamattina L, Jones RL (2002) Nitric oxide acts as an antioxidant and delays programmed cell death in barley aleurone layers. Plant Physiol 129:1642–1650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berna A, Bernier F (1999) Regulation by biotic and abiotic stress of a wheat germin gene encoding oxalate oxidase, a H2O2-producing enzyme. Plant Mol Biol 39:539–549

    Article  CAS  PubMed  Google Scholar 

  • Besson-Bard A, Gravot A, Richaud P, Auroy P, Duc C, Gaymard F, Taconnat L, Renou JP, Pugin A, Wendehenne D (2009) Nitric oxide contributes to cadmium toxicity in Arabidopsis by promoting cadmium accumulation in roots and by up-regulating genes related to iron uptake. Plant Physiol 149:1302–1315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bethke PC, Libourel IGL, Reinhöl V, Jones RL (2006) Sodium nitroprusside, cyanide, nitrite, and nitrate break Arabidopsis seed dormancy in a NO-dependent manner. Planta 223:805–812

    Article  CAS  PubMed  Google Scholar 

  • Bi YH, Chen WL, Zhang WN, Zhou Q, Yun LJ, Xing D (2009) Production of reactive oxygen species, impairment of photosynthetic function and dynamic changes in mitochondria are early events in cadmium-induced cell death in Arabidopsis thaliana. Biol Cell 101:629–643

    Article  CAS  PubMed  Google Scholar 

  • Blomster T, Salojärvi J, Sipari N, Brosché M, Ahlfors R, Keinänen M, Overmyer K, Kangasjärvi J (2011) Apoplastic reactive oxygen species transiently decrease auxin signaling and cause stress induced morphogenic response in Arabidopsis. Plant Physiol 157:1866–1883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bochicchio R, Sofo A, Terzano R, Gattullo CE, Amato M, Scopa A (2015) Root architecture and morphometric analysis of Arabidopsis thaliana grown in Cd/Cu/Zn-gradient agar dishes: a new screening technique for studying plant response to metals. Plant Physiol Biochem 91:20–27

    Article  CAS  PubMed  Google Scholar 

  • Bočová B, Huttová J, Mistrík I, Tamás L (2013) Auxin signalling is involved in cadmium-induced glutathione-S-transferase activity in barley root. Acta Physiol Plant 35:2685–2690

    Article  CAS  Google Scholar 

  • Boominathan R, Doran PM (2002) Ni-induced oxidative stress in roots of the Ni hyperaccumulator, Alyssum bertolonii. New Phytol 156:205–215

    Article  CAS  PubMed  Google Scholar 

  • Bruno L, Pacenza M, Forgione I, Lamerton LR, Greco M, Chiappetta A, Bitonti MB (2017) In Arabidopsis thaliana cadmium impact on the growth of primary root by altering SRC expression and auxin-cytokinin cross-talk. Front Plant Sci 8:1323

    Article  PubMed  PubMed Central  Google Scholar 

  • Cargnelutti D, Tabaldi LA, Spanevello RM, Jucoski GO, Battisti V, Redin M, Linares CEB, Dressler VL, Flores EMM, Nicoloso FT, Morsch VM, Schetinger MRC (2006) Mercury toxicity induces oxidative stress in growing cucumber seedlings. Chemosphere 65:999–1006

    Article  CAS  PubMed  Google Scholar 

  • Castro-Guerrero NA, Rodríguez-Zavala JS, Marín-Hernández A, Rodríguez-Enríquez S, Moreno-Sánchez R (2008) Enhanced alternative oxidase and antioxidant enzymes under Cd2+ stress in Euglena. J Bioenerg Biomembr 40:227–235

    Article  CAS  PubMed  Google Scholar 

  • Chang H-B, Lin C-W, Huang H-J (2005) Zinc-induced cell death in rice (Oryza sativa L.) roots. Plant Growth Regul 46:261–266

    Article  CAS  Google Scholar 

  • Chaoui A, Mazhoudi S, Ghorbal MH, El Ferjani E (1997) Cadmium and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in bean (Phaseolus vulgaris L.). Plant Sci 127:139–147

    Article  CAS  Google Scholar 

  • Chen J, Yang ZM (2012) Mercury toxicity, molecular response and tolerance in higher plants. Biometals 25:847–857

    Article  CAS  PubMed  Google Scholar 

  • Chen XY, He YF, Luo YM, Yu YL, Lin Q, Wong MH (2003) Physiological mechanism of plant roots exposed to cadmium. Chemosphere 50:789–793

    Article  CAS  PubMed  Google Scholar 

  • Chen F, Wang F, Sun H, Cai Y, Mao W, Zhang G, Vincze E, Wu F (2010a) Genotype-dependent effect of exogenous nitric oxide on Cd-induced changes in antioxidative metabolism, ultrastructure, and Photosynthetic performance in barley seedlings (Hordeum vulgare). J Plant Growth Regul 29:394–408

    Article  CAS  Google Scholar 

  • Chen WW, Yang JL, Qin C, Jin CW, Mo JH, Ye T, Zheng SJ (2010b) Nitric oxide acts downstream of auxin to trigger root ferric-chelate reductase activity in response to iron deficiency in Arabidopsis. Plant Physiol 154:810–819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Q, Dai X, De-Paoli H, Cheng Y, Takebayashi Y, Kasahara H, Kamiya Y, Zhao Y (2014) Auxin overproduction in shoots cannot rescue auxin deficiencies in Arabidopsis roots. Plant Cell Physiol 55:1072–1079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Z, Zhang L, Zhu C (2015) Exogenous nitric oxide mediates alleviation of mercury toxicity by promoting auxin transport in roots or preventing oxidative stress in leaves of rice seedlings. Acta Physiol Plant 37:194

    Article  CAS  Google Scholar 

  • Chen WW, Jin JF, Lou HQ, Liu L, Kochian LV, Yang JL (2018) LeSP-CNR negatively regulates Cd acquisition through repressing nitrate reductase-mediated nitric oxide production in tomato. Planta 248:893–907

    Article  CAS  PubMed  Google Scholar 

  • Cho U-H, Park J-O (2000) Mercury-induced oxidative stress in tomato seedlings. Plant Sci 156:1–9

    Article  CAS  PubMed  Google Scholar 

  • Choudhury FK, Rivero RM, Blumwald E, Mittler R (2017) Reactive oxygen species, abiotic stress and stress combination. Plant J 90:856–867

    Article  CAS  PubMed  Google Scholar 

  • Ci D, Jiang D, Dai T, Jing Q, Cao W (2009) Effects of cadmium on plant growth and physiological traits in contrast wheat recombinant inbred lines differing in cadmium tolerance. Chemosphere 77:1620–1625

    Article  CAS  PubMed  Google Scholar 

  • Corpas FJ, Barroso JB (2013) Nitro-oxidative stress vs oxidative or nitrosative stress in higher plants. New Phytol 199:633–635

    Article  CAS  PubMed  Google Scholar 

  • Corpas FJ, Barroso JB (2014) Peroxynitrite (ONOO) is endogenously produced in arabidopsis peroxisomes and is overproduced under cadmium stress. Ann Bot 113:87–96

    Article  CAS  PubMed  Google Scholar 

  • Corpas FJ, Barroso JB (2017a) Nitric oxide synthase-like activity in higher plants. Nitric Oxide 68:5–6

    Article  CAS  PubMed  Google Scholar 

  • Corpas FJ, Barroso JB (2017b) Lead-induced stress, which triggers the production of nitric oxide (NO) and superoxide anion (O2 ) in Arabidopsis peroxisomes, affects catalase activity. Nitric Oxide 68:103–110

    Article  CAS  PubMed  Google Scholar 

  • Corpas FJ, Leterrier M, Valderrama R, Airaki M, Chaki M, Palma JM, Barroso JB (2011) Nitric oxide imbalance provokes a nitrosative response in plants under abiotic stress. Plant Sci 181:604–611

    Article  CAS  PubMed  Google Scholar 

  • Correa-Aragunde N, Graziano M, Lamattina L (2004) Nitric oxide plays a central role in determining lateral root development in tomato. Planta 218:900–905

    Article  CAS  PubMed  Google Scholar 

  • Correa-Aragunde N, Lombardo C, Lamattina L (2008) Nitric oxide: an active nitrogen molecule that modulates cellulose synthesis in tomato roots. New Phytol 179:386–396

    Article  CAS  PubMed  Google Scholar 

  • Correa-Aragunde N, Cejudo FJ, Lamattina L (2015) Nitric oxide is required for the auxin-induced activation of NADPH-dependent thioredoxin reductase and protein denitrosylation during root growth responses in arabidopsis. Ann Bot 116:695–702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cuypers A, Smeets K, Ruytinx J, Opdenakker K, Keunen E, Remans T, Horemans N, Vanhoudt N, Van Sanden S, Van Belleghem F, Guisez Y, Colpaert J, Vangronsveld J (2011) The cellular redox state as a modulator in cadmium and copper responses in Arabidopsis thaliana seedlings. J Plant Physiol 168:309–316

    Article  CAS  PubMed  Google Scholar 

  • Dat J, Vandenabeele S, Vranová E, Van Montagu M, Inzé D, Van Breusegem F (2000) Dual action of the active oxygen species during plant stress responses. Cell Mol Life Sci 57:779–795

    Article  CAS  PubMed  Google Scholar 

  • De Michele R, Vurro E, Rigo C, Costa A, Elviri L, Di Valentin M, Careri M, Zottini M, di Toppi LS, Schiavo F (2009) Nitric oxide is involved in cadmium-induced programmed cell death in Arabidopsis suspension cultures. Plant Physiol 150:217–228

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Delisle G, Champoux M, Houde M (2001) Characterization of oxalate oxidase and cell death in Al-sensitive and tolerant wheat roots. Plant Cell Physiol 42:324–333

    Article  CAS  PubMed  Google Scholar 

  • Delledonne M, Zeier J, Marocco A, Lamb C (2001) Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response. Proc Natl Acad Sci USA 98:13454–13459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Demecsová L, Bočová B, Zelinová V, Tamás L (2019) Enhanced nitric oxide generation mitigates cadmium toxicity via superoxide scavenging leading to the formation of peroxynitrite in barley root tip. J Plant Physiol 238:20–28

    Article  PubMed  CAS  Google Scholar 

  • Dixit V, Pandey V, Shyam R (2001) Differential antioxidative responses to cadmium in roots and leaves of pea (Pisum sativum L. cv. Azad). J Exp Bot 52:1101–1109

    Article  CAS  PubMed  Google Scholar 

  • Dixit V, Pandey V, Shyam R (2002) Chromium ions inactivate electron transport and enhance superoxide generation in vivo in pea (Pisum sativum L. cv. Azad) root mitochondria. Plant, Cell Environ 25:687–693

    Article  CAS  Google Scholar 

  • Domingos P, Prado AM, Wong A, Gehring C, Feijo JA (2015) Nitric oxide: a multitasked signaling gas in plants. Mol Plant 8:506–520

    Article  CAS  PubMed  Google Scholar 

  • Doncheva S, Amenós M, Poschenrieder C, Barceló J (2005) Root cell patterning: a primary target for aluminium toxicity in maize. J Exp Bot 56:1213–1220

    Article  CAS  PubMed  Google Scholar 

  • Dong Y, Chen W, Xu L, Kong J, Liu L, He Z (2016) Nitric oxide can induce tolerance to oxidative stress of peanut seedlings under cadmium toxicity. Plant Growth Regul 79:19–28

    Article  CAS  Google Scholar 

  • Duan QH, Kita D, Li C, Cheung AY, Wu HM (2010) FERONIA receptor-like kinase regulates RHO GTPase signaling of root hair development. Proc Natl Acad Sci USA 107:17821–17826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ďurčeková K, Huttová J, Mistrík I, Ollé M, Tamás L (2007) Cadmium induces premature xylogenesis in barley roots. Plant Soil 290:61–68

    Article  CAS  Google Scholar 

  • Ederli L, Reale L, Ferranti F, Pasqualini S (2004) Responses induced by high concentration of cadmium in Phragmites australis roots. Physiol Plant 121:66–74

    Article  CAS  PubMed  Google Scholar 

  • Elobeid M, Göbel C, Feussner I, Polle A (2012) Cadmium interferes with auxin physiology and lignification in poplar. J Exp Bot 63:1413–1421

    Article  CAS  PubMed  Google Scholar 

  • Farnese FS, Menezes-Silva PE, Gusman GS, Oliveira JA (2016) When bad guys become good ones: the key role of reactive oxygen species and nitric oxide in the plant responses to abiotic stress. Front Plant Sci 7:471

    Article  PubMed  PubMed Central  Google Scholar 

  • Fattorini L, Ronzan M, Piacentini D, Della Rovere F, De Virgilio C, Sofo A, Altamura MM, Falasca G (2017) Cadmium and arsenic affect quiescent centre formation and maintenance in Arabidopsis thaliana post-embryonic roots disrupting auxin biosynthesis and transport. Environ Exp Bot 144:37–48

    Article  CAS  Google Scholar 

  • Feigl G, Lehotai N, Molnár Á, Ördög A, Rodríguez-Ruiz M, Palma JM, Corpas FJ, Erdei L, Kolbert Z (2015) Zinc induces distinct changes in the metabolism of reactive oxygen and nitrogen species (ROS and RNS) in the roots of two Brassica species with different sensitivity to zinc stress. Ann Bot 116:613–625

    Article  CAS  PubMed  Google Scholar 

  • Fernández-Marcos M, Sanz L, Lewis DR, Muday GK, Lorenzo O (2011) Nitric oxide causes root apical meristem defects and growth inhibition while reducing PIN-FORMED 1 (PIN1)-dependent acropetal auxin transport. Proc Natl Acad Sci USA 108:18506–18511

    Article  PubMed  PubMed Central  Google Scholar 

  • Fernández-Marcos M, Sanz L, Lorenzo O (2012) Nitric oxide an emerging regulator of cell elongation during primary root growth. Plant Signal Behav 7:196–200

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Finkemeier I, Goodman M, Lamkemeyer P, Kandlbinder A, Sweetlove LJ, Dietz K-J (2005) The mitochondrial type II peroxiredoxin F is essential for redox homeostasis and root growth of Arabidopsis thaliana under stress. J Biol Chem 280:12168–12180

    Article  CAS  PubMed  Google Scholar 

  • Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foyer CH, Noctor G (2016) Stress-triggered redox signalling: what`s in pROSpect? Plant, Cell Environ 39:951–964

    Article  CAS  Google Scholar 

  • Freschi L (2013) Nitric oxide and phytohormone interactions: current status and perspectives. Front Plant Sci 4:398

    Article  PubMed  PubMed Central  Google Scholar 

  • Gabaldón C, Gómez Ros LV, Pedreno MA, Ros Barceló A (2005) Nitric oxide production by the differentiating xylem of Zinnia elegans. New Phytol 165:121–130

    Article  PubMed  CAS  Google Scholar 

  • Gajewska E, Slaba M, Andrzejewska R, Sklodowska M (2006) Nickel-induced inhibition of wheat root growth is related to H2O2 production, but not to lipid peroxidation. Plant Growth Regul 49:95–103

    CAS  Google Scholar 

  • Gajewska E, Glowacki R, Mazur J, Sklodowska M (2013) Differential response of wheat roots to Cu, Ni and Cd treatment: oxidative stress and defense reactions. Plant Growth Regul 71:13–20

    Article  CAS  Google Scholar 

  • Gallego SM, Pena LB, Barcia RA, Azpilicueta CE, Iannone MF, Rosales EP, Zawoznik MS, Groppa MD, Benavides MP (2012) Unravelling cadmium toxicity and tolerance in plants: insight into regulatory mechanisms. Environ Exp Bot 83:33–46

    Article  CAS  Google Scholar 

  • Garnier L, Simon-Plas F, Thuleau P, Agnel J-P, Blein J-P, Ranjeva R, Montillet J-L (2006) Cadmium affects tobacco cells by a series of three waves of reactive oxygen species that contribute to cytotoxicity. Plant, Cell Environ 29:1956–1969

    Article  CAS  Google Scholar 

  • Gaupels F, Furch ACU, Will T, Mur LAJ, Kogel K-H, van Bel AJE (2008) Nitric oxide generation in Vicia Faba phloem cells reveals them to be sensitive detectors as well as possible systemic transducers of stress signals. New Phytol 178:634–646

    Article  CAS  PubMed  Google Scholar 

  • González LF, Rojas MC (1999) Role of wall peroxidases in oat growth inhibition by DIMBOA. Phytochemistry 50:931–937

    Article  Google Scholar 

  • Gouvêa CMCP, Souza JF, Magalhães ACN, Martins IS (1997) NO.-releasing substances that induce growth elongation in maize root segments. Plant Growth Regul 21:183–187

    Article  Google Scholar 

  • Groppa MD, Rosales EP, Iannone MF, Benavides MP (2008) Nitric oxide, polyamines and Cd-induced phytotoxicity in wheat roots. Phytochemistry 69:2609–2615

    Article  CAS  PubMed  Google Scholar 

  • Grossmann K, Kwiatkowski J, Tresch S (2001) Auxin herbicides induce H2O2 overproduction and tissue damage in cleavers (Galium aparine L.). J Exp Bot 52:1811–1816

    Article  CAS  PubMed  Google Scholar 

  • Guan ZQ, Chai TY, Zhang YX, Xu J, Wei W (2009) Enhancement of Cd tolerance in transgenic tobacco plants overexpressing a Cd-induced catalase cDNA. Chemosphere 76:623–630

    Article  CAS  PubMed  Google Scholar 

  • Gupta KJ, Fernie AR, Kaiser WM, van Dongen JT (2011) On the origins of nitric oxide. Trends Plant Sci 16:160–168

    Article  CAS  PubMed  Google Scholar 

  • Gzyl J, Izbianska K, Floryszak-Wieczorek J, Jelonek T, Arasimowicz-Jelonek M (2016) Cadmium affects peroxynitrite generation and tyrosine nitration in seedling roots of soybean (Glycine max L.). Environ Exp Bot 131:155–163

    Article  CAS  Google Scholar 

  • Halušková Ľ, Valentovičová K, Huttová J, Mistrík I, Tamás L (2010) Elevated indole-3-acetic acid peroxidase activity is involved in the cadmium-induced hydrogen peroxide production in barley root tip. Plant Growth Regul 62:59–64

    Article  CAS  Google Scholar 

  • Hao F, Wang X, Chen J (2006) Involvement of plasma-membrane NADPH oxidase in nickel-induced oxidative stress in roots of wheat seedlings. Plant Sci 170:151–158

    Article  CAS  Google Scholar 

  • Hasenstein KH, Evans ML (1988) Effects of cations on hormone transport in primary roots of Zea mays. Plant Physiol 86:890–894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasenstein KH, Evans ML, Stinemetz CL, Moore R, Fondren WM, Koon EC, Higby MA, Smucker AJM (1988) Comparative effectiveness of metal ions in inducing curvature of primary roots of Zea mays. Plant Physiol 86:885–889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He H, He L, Gu M, Li X (2012) Nitric oxide improves aluminum tolerance by regulating hormonal equilibrium in the root apices of rye and wheat. Plant Sci 183:123–130

    Article  CAS  PubMed  Google Scholar 

  • He J, Ren Y, Chen X, Chen H (2014) Protective role of nitric oxide on seed germination and seedling growth of rice (Oryza sativa L.) under cadmium stress. Ecotoxicol Environ Saf 108:114–119

    Article  CAS  PubMed  Google Scholar 

  • Hegedüs A, Erdei S, Horváth G (2001) Comparative studies of H2O2 detoxifying enzymes in green and greening barley seedlings under cadmium stress. Plant Sci 160:1085–1093

    Article  PubMed  Google Scholar 

  • Hernández LE, Sobrino-Plata J, Montero-Palmero MB, Carrasco-Gil S, Flores-Cáceres ML, Ortega-Villasante C, Escobar E (2015) Contribution of glutathione to the control of cellular redox homeostasis under toxic metal and metalloid stress. J Exp Bot 66:2901–2911

    Article  PubMed  CAS  Google Scholar 

  • Heyno E, Klose C, Krieger-Liszkay A (2008) Origin of cadmium-induced reactive oxygen species production: mitochondrial electron transfer versus plasma membrane NADPH oxidase. New Phytol 179:687–699

    Article  CAS  PubMed  Google Scholar 

  • Horst WJ (1995) The role of the apoplast in aluminium toxicity and resistance of higher plants: a review. Z Pflanzenernähr Bodenk 158:419–428

    Article  CAS  Google Scholar 

  • Hossian MA, Hossian AKMZ, Kihara T, Koyama H, Hara T (2005) Aluminum-induced lipid peroxidation and lignin deposition are associated with an increase in H2O2 generation in wheat seedlings. Soil Sci Plant Nutr 51:223–230

    Article  Google Scholar 

  • Hu Y (2016) Early generation of nitric oxide contributes to copper tolerance through reducing oxidative stress and cell death in hulless barley roots. J Plant Res 129:963–978

    Article  CAS  PubMed  Google Scholar 

  • Hu X, Neill SJ, Tang Z, Cai W (2005) Nitric oxide mediates gravitropic bending in soybean roots. Plant Physiol 137:663–670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu YF, Zhou G, Na XF, Yang L, Nana WB, Liu X, Zhang YQ, Li JL, Bi YR (2013) Cadmium interferes with maintenance of auxin homeostasis in Arabidopsis seedlings. J Plant Physiol 170:965–975

    Article  CAS  PubMed  Google Scholar 

  • Huang T-L, Huang H-J (2008) ROS and CDPK-like kinase-mediated activation of MAP kinase in rice roots exposed to lead. Chemosphere 71:1377–1385

    Article  CAS  PubMed  Google Scholar 

  • Huang W, Yang X, Yao S, LwinOo T, He H, Wang A, Li C, He L (2014) Reactive oxygen species burst induced by aluminum stress triggers mitochondria-dependent programmed cell death in peanut root tip cells. Plant Physiol Biochem 82:76–84

    Article  CAS  PubMed  Google Scholar 

  • Illéš P, Schlicht M, Pavlovkin J, Lichtscheidl I, Baluška F, Ovečka M (2006) Aluminium toxicity in plants: internalization of aluminium into cells of the transition zone in Arabidopsis root apices related to changes in plasma membrane potential, endosomal behaviour, and nitric oxide production. J Exp Bot 57:4201–4213

    Article  PubMed  CAS  Google Scholar 

  • Innocenti G, Pucciariello Ch, Le Gleuher M, Hopkins J, de Stefano M, Delledonne M, Puppo A, Baudouin E, Frendo P (2007) Glutathione synthesis is regulated by nitric oxide in Medicago truncatula roots. Planta 225:1597–1602

    Article  CAS  PubMed  Google Scholar 

  • İşeri ÖD, Körpe DA, Yurtcu E, Sahin FI, Haberal M (2011) Copper-induced oxidative damage, antioxidant response and genotoxicity in Lycopersicum esculentum Mill. and Cucumis sativus L. Plant Cell Rep 30:1713–1721

    Article  PubMed  CAS  Google Scholar 

  • Ivanchenko MG, den Os D, Monshausen GB, Dubrovsky JG, Bednářová A, Krishnan N (2013) Auxin increases the hydrogen peroxide (H2O2) concentration in tomato (Solanum lycopersicum) root tips while inhibiting root growth. Ann Bot 112:1107–1116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jakubowska D, Janicka-Russak M, Kabala K, Migocka M, Reda M (2015) Modification of plasma membrane NADPH oxidase activity in cucumber seedling roots in response to cadmium stress. Plant Sci 234:50–59

    Article  CAS  PubMed  Google Scholar 

  • Janas KM, Zielińska-Tomaszewska J, Rybaczek D, Maszewski J, Posmyk MM, Amarowicz R, Kosińska A (2010) The impact of copper ions on growth, lipid peroxidation, and phenolic compound accumulation and localization in lentil (Lens culinaris Medic.) seedlings. J Plant Physiol 167:270–276

    Article  CAS  PubMed  Google Scholar 

  • Jones RD, Hancock JT, Morice AH (2000) NADPH oxidase: a universal oxygen sensor? Free Radic Biol Med 29:416–424

    Article  CAS  PubMed  Google Scholar 

  • Jones DL, Blancaflor EB, Kochian LV, Gilroy S (2006) Spatial coordination of aluminium uptake, production of reactive oxygen species, callose production and wall rigidification in maize roots. Plant, Cell Environ 9:1309–1318

    Article  CAS  Google Scholar 

  • Joo JH, Bae YS, Lee JS (2001) Role of auxin-induced reactive oxygen species in root gravitropism. Plant Physiol 126:1055–1060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawano T (2003) Roles of the reactive oxygen species-generating peroxidase reactions in plant defense and growth induction. Plant Cell Rep 21:829–837

    CAS  PubMed  Google Scholar 

  • Kazan K (2013) Auxin and the integration of environmental signals into plant root development. Ann Bot 112:1655–1665

    Article  PubMed  PubMed Central  Google Scholar 

  • Kenuen E, Jozefczak M, Remans T, Vangronsveld J, Cuypers A (2013) Alternative respiration as a primary defence during cadmium-induced mitochondrial oxidative challenge in Arabidopsis thaliana. Environ Exp Bot 91:63–73

    Article  CAS  Google Scholar 

  • Kharbech O, Houmani H, Chaoui A, Corpas FJ (2017) Alleviation of Cr(VI)-induced oxidative stress in maize (Zea mays L.) seedlings by NO and H2S donors through differential organ-dependent regulation of ROS and NADPH-recycling metabolisms. J Plant Physiol 219:71–80

    Article  CAS  PubMed  Google Scholar 

  • Khare D, Mitsuda N, Lee S, Song W-Y, Hwang D, Ohme-Takagi M, Martinoia E, Lee Y, Hwang J-U (2017) Root avoidance of toxic metals requires the GeBP-LIKE 4 transcription factor in Arabidopsis thaliana. New Phytol 213:1257–1273

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi Y, Yamamoto Y, Matsumoto H (2004) Studies on the mechanism of aluminum tolerance in pea (Pisum sativum L.) using aluminum-tolerant cultivar ‘Alaska’ and aluminum-sensitive cultivar ‘Hyogo’. Soil Sci Plant Nutr 50:197–204

    Article  CAS  Google Scholar 

  • Kobayashi Y, Kobayashi Y, Sugimoto M, Lakshmanan V, Iuchi S, Kobayashi M, Bais HP, Koyama H (2013) Characterization of the complex regulation of AtALMT1 expression in response to phytohormones and other inducers. Plant Physiol 162:732–740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kolbert Z (2016) Implication of nitric oxide (NO) in excess element-induced morphogenic responses of the root system. Plant Physiol Biochem 101:149–161

    Article  CAS  PubMed  Google Scholar 

  • Kolbert Z, Pető A, Lehotai N, Feigl G, Erdei L (2012) Long-term copper (Cu2+) exposure impacts on auxin, nitric oxide (NO) metabolism and morphology of Arabidopsis thaliana L. Plant Growth Regul 68:151–159

    Article  CAS  Google Scholar 

  • Kolbert Z, Pető A, Lehotai N, Feigl G, Erdei L (2015) Copper sensitivity of nia1nia2noa1-2 mutant is associated with its low nitric oxide (NO) level. Plant Growth Regul 77:255–263

    Article  CAS  Google Scholar 

  • Kollmeier M, Felle HH, Horst WJ (2000) Genotypical differences in aluminum resistance of maize are expressed in the distal part of the transition zone. Is reduced basipetal auxin flow involved in inhibition of root elongation by aluminum? Plant Physiol 122:945–956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kong X, Li C, Zhang F, Yu Q, Gao S, Zhang M, Tian H, Zhang J, Yuan X, Ding Z (2018) Ethylene promotes cadmium-induced root growth inhibition through EIN3 controlled XTH33 and LSU1 expression in Arabidopsis. Plant, Cell Environ 41:2449–2462

    Article  CAS  Google Scholar 

  • Kopittke PM, Menzies NW, Wang P, McKenna BA, Wehr JB, Lombi E, Kinraide TB, Blamey FPC (2014) The rhizotoxicity of metal cations is related to their strength of binding to hard ligands. Environ Toxicol Chem 33:268–277

    Article  CAS  PubMed  Google Scholar 

  • Kopittke PM, Moore KL, Lombi E, Gianoncelli A, Ferguson BJ, Blamey FPC, Menzies NW, Nicholson TM, McKenna BA, Wang P, Gresshoff PM, Kourousias G, Webb RI, Green K, Tolllenaere A (2015) Identification of the primary lesion of toxic aluminum in plant roots. Plant Physiol 167:1402–1411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kopyra M, Gwóźdź EA (2003) Nitric oxide stimulates seed germination and counteracts the inhibitory effect of heavy metals and salinity on root growth of Lupinus luteus. Plant Physiol Biochem 41:1011–1017

    Article  CAS  Google Scholar 

  • Kopyra M, Stachoń-Wilk M, Gwóźdź EA (2006) Effects of exogenous nitric oxide on the antioxidant capacity of cadmium-treated soybean cell suspension. Acta Physiol Plant 28:525–536

    Article  CAS  Google Scholar 

  • Kováčik J, Grúz J, Klejdus B, Štork F, Marchiosi R, Ferrarese-Filho O (2010) Lignification and related parameters in copper-exposed Matricaria chamomilla roots: role of H2O2 and NO in this process. Plant Sci 179:383–389

    Article  CAS  Google Scholar 

  • Kovács E, Nyitrai P, Czövek P, Óvári M, Keresztes Á (2009) Investigation into the mechanism of stimulation by low-concentration stressors in barley seedlings. J Plant Physiol 166:72–79

    Article  PubMed  CAS  Google Scholar 

  • Kovtun Y, Chiu W-L, Tena G, Sheen J (2000) Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proc Natl Acad Sci USA 97:2940–2945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kulik A, Anielska-Mazur A, Bucholc M, Koen E, Szymańska K, Żmieńko A, Krzywińska E, Wawer I, Mcloughlin F, Ruszkowski D, Figlerowicz M, Testerink C, Sklodowska A, Wendehenne D, Dobrowolska G (2012) SNF1-related protein kinases type 2 are involved in plant responses to cadmium stress. Plant Physiol 160:868–883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lehotai N, Pető A, Bajkán S, Erdei L, Tari I, Kolbert Z (2011) In vivo and in situ visualization of early physiological events induced by heavy metals in pea root meristem. Acta Physiol Plant 33:2199–2207

    Article  CAS  Google Scholar 

  • Lequeux H, Hermans C, Lutts S, Verbruggen N (2010) Response to copper excess in Arabidopsis thaliana: impact on the root system architecture, hormone distribution, lignin accumulation and mineral profile. Plant Physiol Biochem 48:673–682

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Xing D (2011) Mechanistic study of mitochondria-dependent programmed cell death induced by aluminium phytotoxicity using fluorescence techniques. J Exp Bot 62:331–343

    Article  CAS  PubMed  Google Scholar 

  • Lin CC, Chen LM, Liu ZH (2005) Rapid effect of copper on lignin biosynthesis in soybean roots. Plant Sci 168:855–861

    Article  CAS  Google Scholar 

  • Liptáková Ľ, Bočová B, Huttová J, Mistrík I, Tamás L (2012) Superoxide production induced by short-term exposure of barley roots to cadmium, auxin, alloxan and sodium dodecyl sulfate. Plant Cell Rep 31:2189–2197

    Article  PubMed  CAS  Google Scholar 

  • Liptáková Ľ, Huttová J, Mistrík I, Tamás L (2013) Enhanced lipoxygenase activity is involved in the stress response but not in the harmful lipid peroxidation and cell death of short-term cadmium-treated barley root tip. J Plant Physiol 170:646–652

    Article  PubMed  CAS  Google Scholar 

  • Liu X-M, Kim KE, Kim K-C, Nguyen XC, Han HJ, Jung MS, Kim HS, Kim SH, Park HC, Yun D-J, Chung WS (2010) Cadmium activates Arabidopsis MPK3 and MPK6 via accumulation of reactive oxygen species. Phytochem 71:614–618

    Article  CAS  Google Scholar 

  • Liu J, Li Z, Wang Y, Xing D (2014) Overexpression of ALTERNATIVE OXIDASE1a alleviates mitochondria-dependent programmed cell death induced by aluminium phytotoxicity in Arabidopsis. J Exp Bot 65:4465–4478

    Article  CAS  PubMed  Google Scholar 

  • Liu G, Gao S, Tian H, Wu W, Robert HS, Ding Z (2016) Local transcriptional control of YUCCA regulates auxin promoted root-growth inhibition in response to aluminium stress in Arabidopsis. PLoS Genet 12:e1006360

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu W-C, Zheng S-C, Yu Z-D, Gao X, Shen R, Lu Y-T (2018) WD40-repeat 5a represses root meristem growth by suppressing auxin synthesis through changes of nitric oxide accumulation in Arabidopsis. Plant J 93:883–893

    Article  CAS  PubMed  Google Scholar 

  • Ljung K (2013) Auxin metabolism and homeostasis during plant development. Development 140:943–950

    Article  CAS  PubMed  Google Scholar 

  • Lombardo MC, Graziano M, Polacco JC, Lamattina L (2006) Nitric oxide functions as a positive regulator of root hair development. Plant Signal Behav 1:28–33

    Article  PubMed  PubMed Central  Google Scholar 

  • Lux A, Martinka M, Vaculík M, White PJ (2011) Root responses to cadmium in the rhizosphere: a review. J Exp Bot 62:21–37

    Article  CAS  PubMed  Google Scholar 

  • Ma W, Xu W, Xu H, Chen Y, He Z, Ma M (2010) Nitric oxide modulates cadmium influx during cadmium-induced programmed cell death in tobacco BY-2 cells. Planta 232:325–335

    Article  CAS  PubMed  Google Scholar 

  • Madejón P, Ramírez-Benítez JE, Corrales I, Barceló J, Poschenrieder C (2009) Copper-induced oxidative damage and enhanced antioxidant defenses in the root apex of maize cultivars differing in Cu tolerance. Environ Exp Bot 67:415–420

    Article  CAS  Google Scholar 

  • Maheshwari R, Dubey RS (2009) Nickel-induced oxidative stress and the role of antioxidant defence in rice seedlings. Plant Growth Regul 59:37–49

    Article  CAS  Google Scholar 

  • Mahmood TJ, Gupta K, Kaiser WM (2009) Cadmium stress stimulates nitric oxide production by wheat roots. Pak J Bot 41:1285–1290

    CAS  Google Scholar 

  • Maksymiec W (2011) Effects of jasmonate and some other signalling factors on bean and onion growth during the initial phase of cadmium action. Biol Plant 55:112–118

    Article  CAS  Google Scholar 

  • Malecka A, Piechalak A, Tomaszewska B (2009a) Reactive oxygen species production and antioxidative defense system in pea root tissues treated with lead ions: the whole roots level. Acta Physiol Plant 31:1053–1063

    Article  CAS  Google Scholar 

  • Malecka A, Derba-Maceluch M, Kaczorowska K, Piechalak A, Tomaszewska B (2009b) Reactive oxygen species production and antioxidative defense system in pea root tissues treated with lead ions: mitochondrial and peroxisomal level. Acta Physiol Plant 31:1065–1075

    Article  CAS  Google Scholar 

  • Manoli A, Begheldo M, Genre A, Lanfranco L, Trevisan S, Quaggiotti S (2014) NO homeostasis is a key regulator of early nitrate perception and root elongation in maize. J Exp Bot 65:185–200

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto H, Motoda H (2012) Aluminum toxicity recovery processes in root apices. Possible association with oxidative stress. Plant Sci 185–186:1–8

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto H, Motoda H (2013) Oxidative stress is associated with aluminum toxicity recovery in apex of pea root. Plant Soil 363:399–410

    Article  CAS  Google Scholar 

  • Meriga B, Reddy BK, Rao KR, Reddy LA, Kishor PBK (2004) Aluminium-induced production of oxygen radicals, lipid peroxidation and DNA damage in seedlings of rice (Oryza sativa). J Plant Physiol 161:63–68

    Article  CAS  PubMed  Google Scholar 

  • Minglin L, Yuxiu Z, Tuanyao C (2005) Identification of genes up-regulated in response to Cd exposure in Brassica juncea L. Gene 363:151–158

    Article  CAS  PubMed  Google Scholar 

  • Mittler R, Vanderauwera S, Suzuki N, Miller G, Tognetti VB, Vandepoele K, Gollery M, Shulaev V, Van Breusegem F (2011) ROS signaling: the new wave? Trends Plant Sci 16:300–309

    Article  CAS  PubMed  Google Scholar 

  • Molassiotis A, Fotopoulos V (2011) Oxidative and nitrosative signaling in plants: two branches in the same tree? Plant Signal Behav 6:210–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montero-Palmero MB, Martín- Barranco A, Escobar C, Hernández LE (2014) Early transcriptional responses to mercury: a role for ethylene in mercury-induced stress. New Phytol 201:116–130

    Article  CAS  PubMed  Google Scholar 

  • Morina F, Jovanovic L, Mojovic Vidovic M, Pankovic D, Jovanovic SV (2010) Zinc-induced oxidative stress in Verbascum thapsus is caused by an accumulation of reactive oxygen species and quinhydrone in the cell wall. Physiol Plant 140:209–224

    CAS  PubMed  Google Scholar 

  • Mroue S, Simeunovic A, Robert HS (2018) Auxin production as an integrator of environmental cues for developmental growth regulation. J Exp Bot 69:201–212

    Article  CAS  PubMed  Google Scholar 

  • Mugnai S, Azzarello E, Baluška F, Mancuso S (2012) Local root apex hypoxia induces NO-mediated hypoxic acclimation of the entire root. Plant Cell Physiol 53:912–920

    Article  CAS  PubMed  Google Scholar 

  • Mullineaux PM, Baker NR (2010) Oxidative stress: antagonistic signaling for acclimation or cell death? Plant Physiol 154:521–525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagajyoti PC, Lee KD, Sreekanth TVM (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8:199–216

    Article  CAS  Google Scholar 

  • Navascués J, Pérez-Rontomé C, Sánchez DH, Staudinger C, Wienkoop S, Rellán-Álvarez R, Becana M (2012) Oxidative stress is a consequence, not a cause, of aluminum toxicity in the forage legume Lotus corniculatus. New Phytol 193:625–636

    Article  PubMed  CAS  Google Scholar 

  • Olmos E, Martínez-Solano JR, Piqueras A, Hellín E (2003) Early steps in the oxidative burst induced by cadmium in cultured tobacco cells (BY-2 line). J Exp Bot 54:291–301

    Article  CAS  PubMed  Google Scholar 

  • Oono Y, Ooura C, Rahman A, Aspuria ET, Hayashi K, Tanaka A, Uchimiya H (2003) p-Chlorophenoxyisobutyric acid impairs auxin response in Arabidopsis root. Plant Physiol 133:1135–1147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Opdenakker K, Remans T, Keunen E, Vangronsveld J, Cuypers A (2012) Exposure of Arabidopsis thaliana to Cd or Cu excess leads to oxidative stress mediated alterations in MAPKinase transcript levels. Environ Exp Bot 83:53–61

    Article  CAS  Google Scholar 

  • Ortega-Villasante C, Rellán-Álvarez R, Del Campo FF, Carpena-Ruiz RO, Hernández LE (2005) Cellular damage induced by cadmium and mercury in Medicago sativa. J Exp Bot 56:2239–2251

    Article  CAS  PubMed  Google Scholar 

  • Ortega-Villasante C, Hernández LE, Rellán-Álvarez R, Del Campo FF, Carpena-Ruiz RO (2007) Rapid alteration of cellular redox homeostasis upon exposure to cadmium and mercury in alfalfa seedlings. New Phytol 176:96–107

    Article  CAS  PubMed  Google Scholar 

  • Pagnussat GC, Lanteri ML, Lombardo MC, Lamattina L (2004) Nitric oxide mediates the indole acetic acid induction activation of a mitogen-activated protein kinase cascade involved in adventitious root development. Plant Physiol 135:279–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan J, Zhu M, Chen H (2001) Aluminum-induced cell death in root tip cells of barley. Environ Exp Bot 46:71–79

    Article  CAS  PubMed  Google Scholar 

  • Panda SK, Saboo L, Katsuhara M, Matsumoto H (2013) Overexpression of alternative oxidase gene confers aluminum tolerance by altering the respiratory capacity and the response to oxidative stress in tobacco cells. Mol Biotechnol 54:551–563

    Article  CAS  PubMed  Google Scholar 

  • Pandey V, Dixit V, Shyam R (2009) Chromium (VI) induced changes in growth and root plasma membrane redox activities in pea plants. Protoplasma 235:49–55

    Article  CAS  PubMed  Google Scholar 

  • Paradiso A, Berardino R, de Pinto MC, Sanitá di Toppi L, Storelli MM, Tommasi F, De Gara L (2008) Increase in ascorbate-glutathione metabolism as local and precocious systemic responses induced by cadmium in durum wheat plants. Plant Cell Physiol 49:362–374

    Article  CAS  PubMed  Google Scholar 

  • Park J-E, Park J-Y, Kim Y-S, Staswick PE, Jeon J, Yun J, Kim S-Y, Kim J, Lee Y-H, Park C-M (2007) GH3-mediated auxin homeostasis links growth regulation with stress adaptation response in Arabidopsis. J Biol Chem 282:10036–10046

    Article  CAS  PubMed  Google Scholar 

  • Pasternak T, Potters G, Caubergs R, Jansen MAK (2005a) Complementary interactions between oxidative stress and auxins control plant growth responses at plant, organ, and cellular level. J Exp Bot 56:1991–2001

    Article  CAS  PubMed  Google Scholar 

  • Pasternak T, Rudas V, Potters G, Jansen MAK (2005b) Morphogenic effects of abiotic stress: reorientation of growth in Arabidopsis thaliana seedlings. Environ Exp Bot 53:299–314

    Article  Google Scholar 

  • Patnaik AR, Achary VMM, Panda BB (2013) Chromium (VI)-induced hormesis and genotoxicity are mediated through oxidative stress in root cells of Allium cepa L. Plant Growth Regul 71:157–170

    Article  CAS  Google Scholar 

  • Peer WA, Cheng Y, Murphy AS (2013) Evidence of oxidative attenuation of auxin signalling. J Exp Bot 64:2629–2639

    Article  CAS  PubMed  Google Scholar 

  • Pena LB, Barcia RA, Azpilicueta CE, Méndez AAE, Gallego SM (2012) Oxidative post translational modifications related to cell cycle are involved in cadmium toxicity in wheat seedlings. Plant Sci 196:1–7

    Article  CAS  PubMed  Google Scholar 

  • Pena LB, Méndez AAE, Matayoshi CL, Zawoznik MS, Gallego SM (2015) Early response of wheat seminal roots growing under copper excess. Plant Physiol Biochem 87:115–123

    Article  CAS  PubMed  Google Scholar 

  • Pérez-Chaca MV, Rodríguez-Serrano M, Molina AS, Pedranzani HE, Zirulnik F, Sandalio LM, Romero-Puertas MC (2014) Cadmium induces two waves of reactive oxygen species in Glycine max (L.) roots. Plant, Cell Environ 37:1672–1687

    Article  CAS  Google Scholar 

  • Pető A, Lehotai N, Lozano-Juste J, León J, Tari I, Erdei L, Kolbert Z (2011) Involvement of nitric oxide and auxin in signal transduction of copper-induced morphological responses in Arabidopsis seedlings. Ann Bot 108:449–457

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pető A, Lehotai N, Feigl G, Tugyi N, Ördög A, Gémes K, Tari I, Erdei L, Kolbert Z (2013) Nitric oxide contributes to copper tolerance by influencing ROS metabolism in Arabidopsis. Plant Cell Rep 32:1913–1923

    Article  PubMed  CAS  Google Scholar 

  • Piotrowska-Niczyporuk A, Bajguz A, Zambrzycka-Szelewa E, Bralska M (2018) Exogenously applied auxins and cytiokinins ameliorate lead toxicity by inducing antioxidant defence system in green alga Acutodesmus obliquus. Plant Physiol Biochem 132:535–546

    Article  CAS  PubMed  Google Scholar 

  • Planchet E, Kaiser WM (2006) Nitric oxide production in plants. Plant Signal Behav 1:46–51

    Article  PubMed  PubMed Central  Google Scholar 

  • Potters G, Pasternak TP, Guisez Y, Palme KJ, Jansen MAK (2007) Stress-induced morphogenic responses: growing out of trouble? Trends Plant Sci 12:98–105

    Article  CAS  PubMed  Google Scholar 

  • Potters G, Pasternak TP, Guisez Y, Jansen MAK (2009) Different stresses, similar morphogenic responses: integrating a plethora of pathways. Plant, Cell Environ 32:158–169

    Article  Google Scholar 

  • Pourrut B, Perchet G, Silvestre J, Cecchi M, Guiresse M, Pinelli E (2008) Potential role of NADPH-oxidase in early steps of lead-induced oxidative burst in Vicia faba roots. J Plant Physiol 165:571–579

    Article  CAS  PubMed  Google Scholar 

  • Quartacci MF, Cosi E, Navari-Izzo F (2001) Lipids and NADPH-dependent superoxide production in plasma membrane vesicles from roots of wheat grown under copper deficiency or excess. J Exp Bot 52:77–84

    CAS  PubMed  Google Scholar 

  • Raeymaekers T, Potters G, Asard H, Guisez Y, Horemans N (2003) Copper-mediated oxidative burst in Nicotiana tabacum L. cv. bright yellow 2 cell suspension cultures. Protoplasma 221:93–100

    Article  CAS  PubMed  Google Scholar 

  • Rahman A, Bannigan A, Sulaman W, Pechter P, Blancaflor EB, Baskin TI (2007) Auxin, actin and growth of the Arabidopsis thaliana primary root. Plant J 50:514–528

    Article  CAS  PubMed  Google Scholar 

  • Raja V, Majeed U, Kang H, Andrabi KI, John R (2017) Abiotic stress: interplay between ROS, hormones and MAPKs. Environ Exp Bot 137:142–157

    Article  CAS  Google Scholar 

  • Ranieri A, Castagna A, Scebba F, Careri M, Zagnoni I, Predieri G, Pagliari M, Sanita di Toppi L (2005) Oxidative stress and phytochelatin characterisation in bread wheat exposed to cadmium excess. Plant Physiol Biochem 43:45–54

    Article  CAS  PubMed  Google Scholar 

  • Rellán-Álvarez R, Ortega-Villasante C, Álvarez-Fernández A, del Campo FF, Hernández LE (2006) Stress responses of Zea mays to cadmium and mercury. Plant Soil 279:41–50

    Article  CAS  Google Scholar 

  • Remans T, Opdenakker K, Smeets K, Mathijsen D, Vangronsveld J, Cuypers A (2010) Metal-specific and NADPH oxidase dependent changes in lipoxygenase and NADPH oxidase gene expression in Arabidopsis thaliana exposed to cadmium or excess copper. Funct Plant Biol 37:532–544

    Article  CAS  Google Scholar 

  • Remans T, Opdenakker K, Guisez Y, Carleer R, Schat H, Vangronsveld J, Cuypers A (2012) Exposure of Arabidopsis thaliana to excess Zn reveals a Zn-specific oxidative stress signature. Environ Exp Bot 84:61–71

    Article  CAS  Google Scholar 

  • Rodríguez-Serrano M, Romero-Puertas MC, Zabalza A, Corpas FJ, Gómez M, Del Río LA, Sandalio LM (2006) Cadmium effect on oxidative metabolism of pea (Pisum sativum L.) roots. Imaging of reactive oxygen species and nitric oxide accumulation in vivo. Plant, Cell Environ 29:1532–1544

    Article  CAS  Google Scholar 

  • Ronzan M, Piacentini D, Fattorini L, Della Rovere F, Eiche E, Riemann M, Altamura MM, Falasca G (2018) Cadmium and arsenic affect root development in Oryza sativa L. negatively interacting with auxin. Environ Exp Bot 151:64–75

    Article  CAS  Google Scholar 

  • Saini S, Sharma I, Kaur N, Pati PK (2013) Auxin: a master regulator in plant root development. Plant Cell Rep 32:741–757

    Article  CAS  PubMed  Google Scholar 

  • Sanità di Toppi L, Castagna A, Andreozzi E, Careri M, Predieri G, Vurro E, Ranieri A (2009) Occurrence of different inter-varietal and inter-organ defence strategies towards supra-optimal zinc concentrations in two cultivars of Triticum aestivum L. Environ Exp Bot 66:220–229

    Article  CAS  Google Scholar 

  • Sanz L, Fernández-Marcos M, Modrego A, Lewis DR, Muday GK, Pollmann S, Dueñas M, Santos-Buelga C, Lorenzo O (2014) Nitric oxid plays a role in stem cell niche homeostasis through its interaction with auxin. Plant Physiol 166:1972–1984

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schützendübel A, Schwanz P, Teichmann T, Gross K, Langenfeld-Heyser R, Godbold DL, Polle A (2001) Cadmium-induced changes in antioxidative systems, hydrogen peroxide content, and differentiation in Scots pine roots. Plant Physiol 127:887–898

    Article  PubMed  PubMed Central  Google Scholar 

  • Schützendübel A, Nikolova P, Rudolf C, Polle A (2002) Cadmium and H2O2-induced oxidative stress in Populus x canescens roots. Plant Physiol Biochem 40:577–584

    Article  Google Scholar 

  • Sgherri C, Quartacci MF, Navari-Izzo F (2007) Early production of activated oxygen species in root apoplast of wheat following copper excess. J Plant Physiol 164:1152–1160

    Article  CAS  PubMed  Google Scholar 

  • Shao G, Chen M, Wang W, Mou R, Zhang G (2007) Iron nutrition affects cadmium accumulation and toxicity in rice plants. Plant Growth Regul 53:33–42

    Article  CAS  Google Scholar 

  • Sharma P, Dubey RS (2005) Lead toxicity in plants. Braz J Plant Physiol 17:35–52

    Article  CAS  Google Scholar 

  • Sharma SS, Kaul S, Metwally A, Goyal KC, Finkemeier I, Dietz K-J (2004) Cadmium toxicity to barley (Hordeum vulgare) as affected by varying Fe nutritional status. Plant Sci 166:1287–1295

    Article  CAS  Google Scholar 

  • Sharma SS, Dietz K-J, Mimura T (2016) Vacuolar compartmentalization as indispensable component of heavy metal detoxification in plants. Plant, Cell Environ 39:1112–1126

    Article  CAS  Google Scholar 

  • Sharma SS, Yamamoto K, Hamaji K, Ohnishi M, Anegawa A, Sharma S, Thakur S, Kumar V, Uemura T, Nakano A, Mimura T (2017) Cadmium-induced changes in vacuolar aspects of Arabidopsis thaliana. Plant Physiol Biochem 114:29–37

    Article  CAS  PubMed  Google Scholar 

  • Shen H, Hou N, Schlicht M, Wan Y, Mancuso S, Baluška F (2008) Aluminium toxicity targets PIN2 in Arabidopsis root apices: effects on PIN2 endocytosis, vesicular recycling, and polar auxin transport. Chin Sci Bull 53:2480–2487

    CAS  Google Scholar 

  • Šimonovičová M, Huttová J, Mistrík I, Široká B, Tamás L (2004) Peroxidase mediated hydrogen peroxide production in barley roots grown under stress conditions. Plant Growth Regul 44:267–275

    Article  CAS  Google Scholar 

  • Simontacchi M, García-Mata C, Bartoli CG, Santa-María GE, Lamattina L (2013) Nitric oxide as a key component in hormone-regulated processes. Plant Cell Rep 32:853–866

    Article  CAS  PubMed  Google Scholar 

  • Simontacchi M, Galatro A, Ramos-Artuso F, Santa-María GE (2015) Plant survival in a changing environment: the role of nitric oxide in plant responses to abiotic stress. Front Plant Sci 6:977

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh P, Shah K (2014) Evidences for reduced metal-uptake and membrane injury upon application of nitric oxide donor in cadmium stressed rice seedlings. Plant Physiol Biochem 83:180–184

    Article  CAS  PubMed  Google Scholar 

  • Singh HP, Batish DR, Kaur G, Arora K, Kohli RK (2008) Nitric oxide (as sodium nitroprusside) supplementation ameliorates Cd toxicity in hydroponically grown wheat roots. Environ Exp Bot 63:158–167

    Article  CAS  Google Scholar 

  • Sivaguru M, Liu J, Kochian LV (2013) Targeted expression of SbMATE in the root distal transition zone is responsible for sorghum aluminum resistance. Plant J 76:297–307

    CAS  PubMed  Google Scholar 

  • Smeets K, Opdenakker K, Remans T, Van Sanden S, Van Belleghem F, Semane B, Horemans N, Guisez Y, Vangronsveld J, Cuypers A (2009) Oxidative stress-related responses at transcriptional and enzymatic levels after exposure to Cd or Cu in a multipollution context. J Plant Physiol 166:1982–1992

    Article  CAS  PubMed  Google Scholar 

  • Smiri M, Chaoui A, El Ferjani E (2009) Respiratory metabolism in the embryonic axis of germinating pea seed exposed to cadmium. J Plant Physiol 166:259–269

    Article  CAS  PubMed  Google Scholar 

  • Smiri M, Chaoui A, Rouhier N, Kamel C, Gelhaye E, Jacquot J-P, El Ferjani E (2010) Cadmium induced mitochondrial redox changes in germinating pea seed. Biometals 23:973–984

    Article  CAS  PubMed  Google Scholar 

  • Sofo A, Vitti A, Nuzzaci M, Tataranni G, Scopa A, Vangronsveld J, Remans T, Falasca G, Altamura MM, Degola F, Sanita di Toppi L (2013) Correlation between hormonal homeostasis and morphogenic responses in Arabidopsis thaliana seedlings growing in a Cd/Cu/Zn multi-pollution context. Physiol Plant 149:487–498

    Article  CAS  PubMed  Google Scholar 

  • Sofo A, Bochicchio R, Amato M, Rendina N, Vitti A, Nuzzaci M, Altamura MM, Falasca G, Rovere FD, Scopa A (2017) Plant architecture, auxin homeostasis and phenol content in Arabidopsis thaliana grown in cadmium- and zinc-enriched media. J Plant Physiol 216:174–180

    Article  CAS  PubMed  Google Scholar 

  • Song Y, Zhou L, Yang S, Wang C, Zhang T, Wang J (2017) Dose-dependent sensitivity of Arabidopsis thaliana seedling root to copper is regulated by auxin homeostasis. Environ Exp Bot 139:23–30

    Article  CAS  Google Scholar 

  • Srivastava RK, Pandey P, Rajpoot R, Rani A, Dubey RS (2014) Cadmium and lead interactive effects on oxidative stress and antioxidative responses in rice seedlings. Protoplasma 251:1047–1065

    Article  CAS  PubMed  Google Scholar 

  • Su C, Liu L, Liu H, Ferguson BJ, Zou Y, Zhao Y, Wang T, Wang Y, Li X (2016) H2O2 regulates root system architecture by modulating the polar transport and redistribution of auxin. J Plant Biol 59:260–270

    Article  CAS  Google Scholar 

  • Sun P, Tian Q-Y, Chen J, Zhang W-H (2010) Aluminium-induced inhibition of root elongation in Arabidopsis is mediated by ethylene and auxin. J Exp Bot 61:347–356

    Article  CAS  PubMed  Google Scholar 

  • Sun C, Lu L, Liu L, Liu W, Yu Y, Liu X, Hu Y, Jin C, Lin X (2014) Nitrate reductase-mediated early nitric oxide burst alleviates oxidative damage induced by aluminum through enhancement of antioxidant defenses in roots of wheat (Triticum aestivum). New Phytol 201:1240–1250

    Article  CAS  PubMed  Google Scholar 

  • Sun C, Liu L, Lu L, Jin C, Lin X (2018) Nitric oxide acts downstream of hydrogen peroxide in regulating aluminum-induced antioxidant defense that enhances aluminum resistance in wheat seedlings. Environ Exp Bot 145:95–103

    Article  CAS  Google Scholar 

  • Suzuki N (2005) Alleviation by calcium of cadmium-induced root growth inhibition in Arabidopsis seedlings. Plant Biotechnol 22:19–25

    Article  CAS  Google Scholar 

  • Tamás L, Zelinová V (2017) Mitochondrial complex II-derived superoxide is the primary source of mercury toxicity in barley root tip. J Plant Physiol 209:68–75

    Article  PubMed  CAS  Google Scholar 

  • Tamás L, Šimonovičová M, Huttová J, Mistrík I (2004) Elevated oxalate oxidase activity is correlated with Al-induced plasma membrane injury and root growth inhibition in young barley roots. Acta Physiol Plant 26:85–93

    Article  Google Scholar 

  • Tamás L, Budíková S, Huttová J, Mistrík I, Šimonovičová M, Široká B (2005) Aluminum-induced cell death of barley-root border cells is correlated with peroxidase- and oxalate oxidase-mediated hydrogen peroxide production. Plant Cell Rep 24:189–194

    Article  PubMed  CAS  Google Scholar 

  • Tamás L, Mistrík I, Huttová J, Halušková Ľ, Valentovičová K, Zelinová V (2010) Role of reactive oxygen species-generating enzymes and hydrogen peroxide during cadmium, mercury and osmotic stresses in barley root tip. Planta 231:221–231

    Article  PubMed  CAS  Google Scholar 

  • Tamás L, Bočová B, Huttová J, Liptáková Ľ, Mistrík I, Valentovičová K, Zelinová V (2012) Impact of the auxin signaling inhibitor p-chlorophenoxyisobutyric acid on short-term Cd-induced hydrogen peroxide production and growth response in barley root tip. J Plant Physiol 169:1375–1381

    Article  PubMed  CAS  Google Scholar 

  • Tamás L, Mistrík I, Alemayehu A (2014) Low Cd concentration-activated morphogenic defence responses are inhibited by high Cd concentration-induced toxic superoxide generation in barley root tip. Planta 239:1003–1013

    Article  PubMed  CAS  Google Scholar 

  • Tamás L, Mistrík I, Alemayehu A, Zelinová V, Bočová B, Huttová J (2015) Salicylic acid alleviates cadmium-induced stress responses through the inhibition of Cd-induced auxin-mediated reactive oxygen species production in barley root tips. J Plant Physiol 173:1–8

    Article  PubMed  CAS  Google Scholar 

  • Tamás L, Mistrík I, Zelinová V (2016) Cadmium activates both diphenyleneiodonium- and rotenone-sensitive superoxide production in barley root tips. Planta 244:1277–1287

    Article  PubMed  CAS  Google Scholar 

  • Tamás L, Mistrík I, Zelinová V (2017a) Heavy metal-induced reactive oxygen species and cell death in barley root tip. Environ Exp Bot 140:34–40

    Article  CAS  Google Scholar 

  • Tamás L, Bočová B, Huttová J, Mistrík I, Zelinová V (2017b) Depletion of extracellular calcium increases cadmium toxicity in barley root tip via enhanced Cd uptake-mediated superoxide generation and cell death. Acta Physiol Plant 39:50

    Article  CAS  Google Scholar 

  • Tamás L, Demecsová L, Zelinová V (2018) L-NAME decreases the amount of nitric oxide and enhances the toxicity of cadmium via superoxide generation in barley root tip. J Plant Physiol 224–225:68–74

    Article  PubMed  CAS  Google Scholar 

  • Tanimoto E (2005) Regulation of root growth by plant hormones–roles for auxin and gibberellin. Crit Rev Plant Sci 24:249–265

    Article  CAS  Google Scholar 

  • Tazib T, Ikka T, Kuroda K, Kobayashi Y, Kimura K, Koyama H (2009) Quantitative trait loci controlling resistance to cadmium rhizotoxicity in two recombinant inbred populations of Arabidopsis thaliana are partially shared by those for hydrogen peroxide resistance. Physiol Plant 136:395–406

    Article  CAS  PubMed  Google Scholar 

  • Teraoka T, Kaneko M, Mori S, Yoshimura E (2002) Aluminum rapidly inhibits cellulose synthesis in roots of barley and wheat seedlings. J Plant Physiol 159:17–23

    Article  CAS  Google Scholar 

  • Terrile MC, Parıs R, Calderon-Villalobos LIA, Iglesias MJ, Lamattina L, Estelle M, Casalongue CA (2012) Nitric oxide influences auxin signaling through S-nitrosylation of the Arabidopsis TRANSPORT INHIBITOR RESPONSE 1 auxin receptor. Plant J 70:492–500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tewari RK, Hahn E, Paek K (2008) Modulation of copper toxicity-induced oxidative damage by nitric oxide supply in the adventitious roots of Panax ginseng. Plant Cell Rep 27:171–181

    Article  CAS  PubMed  Google Scholar 

  • Thounaojam TC, Panda P, Mazumdar P, Kumar D, Sharma GD, Sahoo L, Sanjib P (2012) Excess copper induced oxidative stress and response of antioxidants in rice. Plant Physiol Biochem 53:33–39

    Article  CAS  PubMed  Google Scholar 

  • Tian Q-Y, Sun D-H, Zhao M-G, Zhang W-H (2007) Inhibition of nitric oxide synthase (NOS) underlies aluminum-induced inhibition of root elongation in Hibiscus moscheutos. New Phytol 174:322–331

    Article  CAS  PubMed  Google Scholar 

  • Tognetti VB, Mühlenbock P, Van Breusegem F (2012) Stress homeostasis–the redox and auxin perspective. Plant, Cell Environ 35:321–333

    Article  CAS  Google Scholar 

  • Tognetti VB, Bielach A, Hrtyan M (2017) Redox regulation at the site of primary growth: auxin, cytokinin and ROS crosstalk. Plant, Cell Environ 40:2586–2605

    Article  CAS  Google Scholar 

  • Valentovičová K, Halušková Ľ, Huttová J, Mistrík I, Tamás L (2009) Effect of heavy metals and temperature on the oxalate oxidase activity and lignification of metaxylem vessels in barley roots. Environ Exp Bot 66:457–462

    Article  CAS  Google Scholar 

  • Valentovičová K, Halušková Ľ, Huttová J, Mistrík I, Tamás L (2010) Effect of cadmium on diaphorase activity and nitric oxide production in barley root tips. J Plant Physiol 167:10–14

    Article  PubMed  CAS  Google Scholar 

  • van de Mortel JE, Schat H, Moerland PD, Loren Ver, van Themaat E, van der Ent S, Blankestijn H, Ghandilyan A, Tsiatsiani S, Aarts MGM (2008) Expression differences for genes involved in lignin, glutathione and sulphate metabolism in response to cadmium in Arabidopsis thaliana and the related Zn/Cd hyperaccumulator Thlaspi caerulescens. Plant, Cell Environ 31:301–324

    Article  CAS  Google Scholar 

  • Vandelle E, Delledonne M (2011) Peroxynitrite formation and function in plants. Plant Sci 181:534–539

    Article  CAS  PubMed  Google Scholar 

  • Vatulescu AD, Fortunato AS, Sá MC, Amâncio S, Ricardo CPP, Jackson PA (2004) Cloning and characterisation of a basic IAA oxidase associated with root induction in Vitis vinifera. Plant Physiol Biochem 42:609–615

    Article  CAS  PubMed  Google Scholar 

  • Vázquez MD, Poschenrieder Ch, Barceló J (1992) Ultrastructural effects and localization of low cadmium concentrations in bean roots. New Phytol 120:215–226

    Article  Google Scholar 

  • Verma S, Dubey RS (2003) Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Sci 164:645–655

    Article  CAS  Google Scholar 

  • Verma K, Mehta SK, Shekhawat GS (2013) Nitric oxide (NO) counteracts cadmium induced cytotoxic processes mediated by reactive oxygen species (ROS) in Brassica juncea: cross-talk between ROS, NO and antioxidant responses. Biometals 26:255–269

    Article  CAS  PubMed  Google Scholar 

  • Vitecek J, Reinohl V, Jones RL (2008) Measuring NO production by plant tissues and suspension cultured cells. Mol Plant 1:270–284

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Fang J, Leonard SS, Rao KMK (2004) Cadmium inhibits the electron transfer chain and induces reactive oxygen species. Free Rad Biol Med 36:1434–1443

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Pajerowska-Mukhtar K, Culler AH, Dong X (2007) Salicylic acid inhibits pathogen growth in plants through repression of the auxin signaling pathway. Curr Biol 17:1784–1790

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Yang L, Yang F, Li X, Song Y, Wang X, Hu X (2010a) Involvements of H2O2 and metallothionein in NO-mediated tomato tolerance to copper toxicity. J Plant Physiol 167:1298–1306

    Article  CAS  PubMed  Google Scholar 

  • Wang H-H, Huang J-J, Bi Y-R (2010b) Nitrate reductase-dependent nitric oxide production is involved in aluminum tolerance in red kidney bean roots. Plant Sci 179:281–288

    Article  CAS  Google Scholar 

  • Wang Q, Liang X, Dong Y, Xu L, Zhang X, Hou J, Fan Z (2013) Effects of exogenous nitric oxide on cadmium toxicity, element contents and antioxidative system in perennial ryegrass. Plant Growth Regul 69:11–20

    Article  CAS  Google Scholar 

  • Wang R, Wang J, Zhao L, Yang S, Song Y (2015) Impact of heavy metal stresses on the growth and auxin homeostasis of Arabidopsis seedlings. Biometals 28:123–132

    Article  PubMed  CAS  Google Scholar 

  • Watanabe M, Henmi K, Ogawa K, Suzuki T (2003) Cadmium-dependent generation of reactive oxygen species and mitochondrial DNA breaks in photosynthetic and non-photosynthetic strains of Euglena gracilis. Comp Biochem Physiol C: Toxicol Pharmacol 134:227–234

    Google Scholar 

  • Wehr JB, Menzies NW, Blamey FPC (2004) Inhibition of cell-wall autolysis and pectin degradation by cations. Plant Physiol Biochem 42:485–492

    Article  CAS  PubMed  Google Scholar 

  • Wu D, Shen H, Yokawa K, Baluška F (2014) Alleviation of aluminium-induced cell rigidity by overexpression of OsPIN2 in rice roots. J Exp Bot 65:5305–5315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu D, Shen H, Yokawa K, Baluška F (2015) Overexpressing OsPIN2 enhances aluminium internalization by elevating vesicular trafficking in rice root apex. J Exp Bot 66:6791–6801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia X-J, Zhou Y-H, Shi K, Zhou J, Foyer CH, Yu J-Q (2015) Interplay between reactive oxygen species and hormones in the control of plant development and stress tolerance. J Exp Bot 66:2839–2856

    Article  CAS  PubMed  Google Scholar 

  • Xiong J, Lu H, Lu K, Duan Y, An L, Zhu C (2009a) Cadmium decreases crown root number by decreasing endogenous nitric oxide, which is indispensable for crown root primordia initiation in rice seedlings. Planta 230:599–610

    Article  CAS  PubMed  Google Scholar 

  • Xiong J, An L, Lu H, Zhu C (2009b) Exogenous nitric oxide enhances cadmium tolerance of rice by increasing pectin and hemicellulose contents in root cell wall. Planta 230:755–765

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Yin H, Li Y, Liu X (2010a) Nitric oxide is associated with long-term zinc tolerance in Solanum nigrum. Plant Physiol 154:1319–1334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu J, Wang W, Yin H, Liu X, Sun H, Mi Q (2010b) Exogenous nitric oxide improves antioxidative capacity and reduces auxin degradation in roots of Medicago truncatula seedlings under cadmium stress. Plant Soil 326:321–330

    Article  CAS  Google Scholar 

  • Xu J, Wang W, Sun J, Zhang Y, Ge Q, Du L, Yin H, Liu X (2011) Involvement of auxin and nitric oxide in plant Cd-stress responses. Plant Soil 346:107–119

    Article  CAS  Google Scholar 

  • Xu L, Dong Y, Kong J, Liu S (2014) Effects of root and foliar applications of exogenous NO on alleviating cadmium toxicity in lettuce seedlings. Plant Growth Regul 72:39–50

    Article  CAS  Google Scholar 

  • Yamamoto Y, Kobayashi Y, Matsumoto H (2001) Lipid peroxidation is an early symptom triggered by aluminum, but not the primary cause of elongation inhibition in pea roots. Plant Physiol 125:199–208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamoto Y, Kobayashi Y, Devi SR, Rikiishi S, Matsumoto H (2002) Aluminum toxicity is associated with mitochondrial dysfunction and the production of reactive oxygen species in plant cells. Plant Physiol 128:63–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang YJ, Cheng LM, Liu ZH (2007) Rapid effect of cadmium on lignin biosynthesis in soybean roots. Plant Sci 172:632–639

    Article  CAS  Google Scholar 

  • Yang Z-B, Geng X, He C, Zhang F, Wang R, Horst WJ, Ding Z (2014) TAA1-regulated local auxin biosynthesis in the root-apex transition zone mediates the aluminum-induced inhibition of root growth in Arabidopsis. Plant Cell 26:2889–2904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Z-B, Liu G, Liu J, Zhang B, Meng W, Müller B, Hayashi K, Zhang X, Zhao Z, De Smet I, Ding Z (2017) Synergistic action of auxin and cytokinin mediates aluminum-induced root growth inhibition in Arabidopsis. EMBO Rep 18:1213–1230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye Y, Li Z, Xing D (2013) Nitric oxide promotes MPK6-mediated caspase-3-like activation in cadmium-induced Arabidopsis thaliana programmed cell death. Plant, Cell Environ 36:1–15

    Article  CAS  Google Scholar 

  • Yin L, Mano J, Wang S, Tsuji W, Tanaka K (2010) The involvement of lipid peroxide-derived aldehydes in aluminum toxicity of tobacco roots. Plant Physiol 152:1406–1417

    Article  CAS  PubMed  Google Scholar 

  • Yruela I (2005) Copper in plants. Braz J Plant Physiol 17:145–156

    Article  CAS  Google Scholar 

  • Yu Q, Sun L, Jin H, Chen Q, Chen Z, Xu M (2012) Lead-induced nitric oxide generation plays a critical role in lead uptake by Pogonatherum crinitum root cells. Plant Cell Physiol 53:1728–1736

    Article  CAS  PubMed  Google Scholar 

  • Yu CL, Sun CD, Shen C, Wang S, Liu F, Liu Y, Chen YL, Li C, Qian Q, Aryal B, Geisler M, Jiang DA, Qi YH (2015) The auxin transporter, OsAUX1, is involved in primary root and root hair elongation and in Cd stress responses in rice (Oryza sativa L.). Plant J 83:818–830

    Article  CAS  PubMed  Google Scholar 

  • Yuan H, Huang X (2016) Inhibition of root meristem growth by cadmium involves nitric oxide-mediated repression of auxin accumulation and signalling in Arabidopsis. Plant, Cell Environ 39:120–135

    Article  CAS  Google Scholar 

  • Yuan H, Xu H, Liu W, Lu Y (2013) Copper regulates primary root elongation through PIN1-mediated auxin redistribution. Plant Cell Physiol 54:766–778

    Article  CAS  PubMed  Google Scholar 

  • Zelinová V, Halušková Ľ, Huttová J, Illéš P, Mistrík I, Valentovičová K, Tamás L (2011) Short-term aluminium-induced changes in barley root tips. Protoplasma 248:523–530

    Article  PubMed  CAS  Google Scholar 

  • Zelinová V, Alemayehu A, Bočová B, Huttová J, Mistrík I, Tamás L (2014) Primary stress response induced by different elements is mediated through auxin signalling in barley root tip. Acta Physiol Plant 36:2935–2946

    Article  CAS  Google Scholar 

  • Zelinová V, Alemayehu A, Bočová B, Huttová J, Mistrík I, Tamás L (2015) Cadmium-induced reactive oxygen species generation, changes in morphogenic responses and activity of some enzymes in barley root tip are regulated by auxin. Biologia 70:356–364

    Article  CAS  Google Scholar 

  • Zhang H, Jiang Y, He Z, Ma M (2005) Cadmium accumulation and oxidative burst in garlic (Allium sativum). J Plant Physiol 162:977–984

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Xia Y, Wang G, Shen Z (2008) Excess copper induces accumulation of hydrogen peroxide and increases lipid peroxidation and total activity of copper-zinc superoxide dismutase in roots of Elsholtzia haichowensis. Planta 227:465–475

    Article  CAS  PubMed  Google Scholar 

  • Zhang F, Zhang H, Xia Y, Wang G, Xu L, Shen Z (2011) Exogenous application of salicylic acid alleviates cadmium toxicity and reduces hydrogen peroxide accumulation in root apoplasts of Phaseolus aureus and Vicia sativa. Plant Cell Rep 30:1475–1483

    Article  CAS  PubMed  Google Scholar 

  • Zhang M, Lu X, Li C, Zhang B, Zhang C, Zhang X, Ding Z (2018a) Auxin efflux carrier ZmPGP1 mediates root growth inhibition under aluminum stress. Plant Physiol 177:819–832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Li G, Wang M, Di D, Sun L, Kronzucker HJ, Shi W (2018b) Excess iron stress reduces root tip zone growth through nitric oxide-mediated repression of potassium homeostasis in Arabidopsis. New Phytol 219:259–274

    Article  CAS  PubMed  Google Scholar 

  • Zhao FY, Hu F, Han MM, Zhang SY, Liu T (2011) Superoxide radical and auxin are implicated in redistribution of root growth and the expression of auxin and cell-cycle genes in cadmium-stressed rice. Russ J Plant Physiol 58:851–863

    Article  CAS  Google Scholar 

  • Zhao FY, Han MM, Zhang SY (2012) Hydrogen peroxide-mediated growth of the root system occurs via auxin signaling modification and variations in the expression of cell-cycle genes in rice seedlings exposed to cadmium stress. J Integr Plant Biol 54:991–1006

    Article  CAS  PubMed  Google Scholar 

  • Zhao FY, Hu F, Zhang SY, Wang K, Zhang CR, Liu T (2013) MAPKs regulate root growth by influencing auxin signaling and cell cycle-related gene expression in cadmium-stressed rice. Environ Sci Pollut Res 20:5449–5460

    Article  CAS  Google Scholar 

  • Zhao H, Jin Q, Wang Y, Chu L, Li X, Xu Y (2016) Effects of nitric oxide on alleviating cadmium stress in Typha angustifolia. Plant Growth Regul 78:243–251

    Article  CAS  Google Scholar 

  • Zhou ZS, Huang SQ, Guo K, Mehta SK, Zhang PC, Yang ZM (2007) Metabolic adaptation to mercury-induced oxidative stress in roots of Medicago sativa L. J Inorg Biochem 101:1–9

    Article  CAS  PubMed  Google Scholar 

  • Zhou P, Yang F, Ren X, Huang B, An Y (2014) Phytotoxicity of aluminum on root growth and indole-3-acetic acid accumulation and transport in alfalfa roots. Environ Exp Bot 104:1–8

    Article  CAS  Google Scholar 

  • Zhou L, Hou H, Yang T, Lian Y, Sun Y, Bian Z, Wang C (2018) Exogenous hydrogen peroxide inhibits primary root gravitropism by regulating auxin distribution during Arabidopsis seed germination. Plant Physiol Biochem 128:126–133

    Article  CAS  PubMed  Google Scholar 

  • Zhu XF, Lei GJ, Wang ZW, Shi YZ, Braam J, Li GX, Zheng SJ (2013) Coordination between apoplastic and symplastic detoxification confers plant aluminum resistance. Plant Physiol 162:1947–1955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Źróbek-Sokolnik A, Asard H, Górska-Koplińska K, Górecki RJ (2009) Cadmium and zinc-mediated oxidative burst in tobacco BY-2 cell suspension cultures. Acta Physiol Plant 31:43–49

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Grant Agency VEGA, project No. 2/0039/16. The authors would also like to thank the anonymous reviewers for their helpful criticisms, who improved the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Both authors designed, wrote and approved the manuscript.

Corresponding author

Correspondence to Ladislav Tamás.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demecsová, L., Tamás, L. Reactive oxygen species, auxin and nitric oxide in metal-stressed roots: toxicity or defence. Biometals 32, 717–744 (2019). https://doi.org/10.1007/s10534-019-00214-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-019-00214-3

Keywords

Navigation