Skip to main content

Advertisement

Log in

Tracking invasive animals with electronic tags to assess risks and develop management strategies

  • Perpectives and paradigms
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

Invasive species alter ecosystem structure and function when they establish in new habitats. Although preventing or managing invasions is extremely important for maintaining biodiversity, doing so is difficult and requires efficient intervention. Remote monitoring of free-living animals with electronic tags (i.e. tags that transmit data remotely or log them for future retrieval) can contribute important knowledge about invasive animal biology. A quantitative literature review identified instances in which electronic tagging has contributed to studying invasions. Electronic tags were generally used for one of four purposes: (1) characterize spatial ecology; (2) identify interactions; (3) assess risk potential; or (4) evaluate management options. Overall, electronic tags have considerable potential for developing, refining, and evaluating invasion management strategies that contribute to conservation efforts. We explore the role of electronic tags as a component of integrated control program design and implementation for invasive animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bajer PG, Chizinski CJ, Sorensen PW (2011) Using the Judas technique to locate and remove wintertime aggregations of invasive common carp. Fish Manag Ecol 18:497–505

    Article  Google Scholar 

  • Blackburn TM, Pyšek P, Bacher S, Carlton JT, Duncan RP, Jarošík V, Wilson JRU, Richardson DM (2011) A proposed unified framework for biological invasions. Trends Ecol Evol 26:333–339

    Article  PubMed  Google Scholar 

  • Bolger DT, Case TJ (1992) Intra-and interspecific interference behaviour among sexual and asexual geckos. Anim Behav 44:21–30

    Article  Google Scholar 

  • Braby CE, Somero GN (2006) Following the heart: temperature and salinity effects on heart rate in native and invasive species of blue mussels (Genus Mytilus). J Exp Biol 209:2554–2566

    Article  PubMed  Google Scholar 

  • Bravener GA, McLaughlin RL (2013) A behavioural framework for trapping success and its application to invasive sea lamprey. Can J Fish Aquat Sci 70:1438–1446

    Article  Google Scholar 

  • Brown RS, Cooke SJ, Anderson WG, McKinley RS (1999) Evidence to challenge the “2% rule” for biotelemetry. N Am J Fish Manag 19:867–871

    Article  Google Scholar 

  • Brzezińsk M, Natorff M, Zalewski A, Żmihorski M (2012) Numerical and behavioral responses of waterfowl to the invasive American mink: a conservation paradox. Biol Conserv 147:68–78

    Article  Google Scholar 

  • Buřič M, Kouba A, Kozák P (2009) Spring mating period in Orconectes limosus: the reason for movement. Aquat Sci 71:473–477

    Article  Google Scholar 

  • Carter SP, Bright PW (2003) Reedbeds as refuges for water voles (Arvicola terrestris) from predation by introduced mink (Mustela vison). Biol Conserv 111:371–376

    Article  Google Scholar 

  • Clout MN, Veitch CR (2002) Turning the tide of biological invasion: the potential for eradicating invasive species. IUCN SSC Invasive Species Specialist Group, Gland and Cambridge

    Google Scholar 

  • Comeau LA, Sonier R, Hanson JM (2012) Seasonal movements of Atlantic rock crab (Cancer irroratus) transplanted into a mussel aquaculture site. Aquac Res 43:509–517

    Article  Google Scholar 

  • Cooke SJ (2008) Biotelemetry and biologging in endangered species research and animal conservation: relevance to regional, national, and IUCN Red List threat assessments. Endanger Species Res 4:165–185

    Article  Google Scholar 

  • Cooke SJ, Hinch SG, Wikelski M, Andrews RD, Kuchel LJ, Wolcott TG, Butler PJ (2004) Biotelemetry: a mechanistic approach to ecology. Trends Ecol Evol 19:334–343

    Article  PubMed  Google Scholar 

  • Cooke SJ, Midwood JD, Thiem JD, Klimley P, Lucas MC, Thorstad EB, Eiler J, Holbrook C, Ebner BC (2013) Tracking animals in freshwater with electronic tags: past, present and future. Anim Biotelemetry 1:5

    Article  Google Scholar 

  • Cookingham MN, Ruetz CR (2008) Evaluating passive integrated transponder tags for tracking movements of round gobies. Ecol Freshw Fish 17:303–311

    Article  Google Scholar 

  • Dawson HA, Reinhardt UG, Savino JF (2006) Use of electric or bubble barriers to limit the movement of Eurasian ruffe (Gymnocephalus cernuus). J Great Lakes Res 32:40–49

    Article  Google Scholar 

  • Dorcas ME, Willson JD, Gibbons JW (2011) Can invasive Burmese pythons inhabit temperate regions of the southeastern United States? Biol Invasions 13:793–802

    Article  Google Scholar 

  • Ehrlich PR (1986) Which animal will invade? In: Mooney HA, Drake JA (eds) Ecology of biological invasions of North America and Hawaii. Springer, New York, pp 79–95

    Chapter  Google Scholar 

  • Gurevitch J, Padilla DK (2004) Are invasive species a major cause of extinctions? Trends Ecol Evol 19:470–474

    Article  PubMed  Google Scholar 

  • Hays GC, Forman DW, Harrington LA, Harrington AL, MacDonald DW, Righton D (2007) Recording the free-living behaviour of small-bodied, shallow-diving animals with data loggers. J Anim Ecol 76:183–190

    Article  PubMed  Google Scholar 

  • Henry PY, Salgado CL, Muñoz FP, Wikelski MC (2013) Birds introduced in new areas show rest disorders. Biol Lett 9:20130463

    Article  PubMed  PubMed Central  Google Scholar 

  • Holbrook CM, Johnson NS, Steibel JP, Twohey MB, Binder TR, Krueger CC, Jones ML (2014) Estimating reach-specific fish movement probabilities in rivers with a Bayesian state-space model: application to sea lamprey passage and capture at dams. Can J Fish Aquat Sci 71:1713–1729

    Article  Google Scholar 

  • Holway DA, Suarez AV (1999) Animal behavior: an essential component of invasion biology. Trends Ecol Evol 14:328–330

    Article  PubMed  Google Scholar 

  • Hulme PE, Nentwig W, Pysek P, Vila M (2009) Delivering alien invasive species inventories for Europe (DAISIE) Handbook of alien species in Europe. Springer, Berlin

    Google Scholar 

  • Hussey NE, Kessel ST, Aarestrup K, Cooke SJ, Cowley PD, Fisk AT, Harcourt RG, Holland KN, Iverson SJ, Kocik JF, Mills Flemming JE, Whoriskey FG (2015) Aquatic animal telemetry: a panoramic window into the underwater world. Science 348:1255642

    Article  PubMed  Google Scholar 

  • Jackson DB (2001) Experimental removal of introduced hedgehogs improves wader nest success in the Western Isles, Scotland. J Appl Ecol 38:802–812

    Article  Google Scholar 

  • Jiménez JE, Crego RD, Soto GE, Román I, Rozzi R, Vergara PM (2013) Potential impact of the Alien American Mink (Neovison vison) on Magellanic woodpeckers (Campephilus magellanicus) in Navarino Island, Southern Chile. Biol Invasions 16:961–966

    Article  Google Scholar 

  • Kenward R (2001) A manual for wildlife radio tagging. Academic Press, London

    Google Scholar 

  • Kissling D, Pattemore DE, Hagen M (2013) Challenges and prospects in the telemetry of insects. Biol Rev 89:511–530

    Article  Google Scholar 

  • Kobayashi R, Hasegawa M, Miyashita T (2006) Home range and habitat use of the exotic turtle Chelydra serpentina in the Inbanuma Basin, Chiba Prefecture, Central Japan. Curr Herpetol 25:47–55

    Article  Google Scholar 

  • Kolar CS, Lodge DM (2001) Progress in invasion biology: predicting invaders. Trends Ecol Evol 16:199–204

    Article  PubMed  Google Scholar 

  • Kowalczyk R, Zalewski A (2011) Adaptation to cold and predation—shelter use by invasive raccoon dogs Nyctereutes procyonoides in Białowieża Primeval Forest (Poland). Eur J Wildl Res 57:133–142

    Article  Google Scholar 

  • Lennox RJ, Choi K, Harrison PM, Paterson JE, Peat T, Ward T, Cooke SJ (2015) Improving science-based invasive species management with physiological knowledge, concepts, and tools. Biol Invasions. doi:10.1007/s10530-015-0884-5

    Google Scholar 

  • Leung B, Lodge DM, Finnoff D, Shogren JF, Lewis MA, Lamberti G (2002) An ounce of prevention or a pound of cure: bioeconomic risk analysis of invasive species. Proc R Soc B Biol Sci 269:2407–2413

    Article  Google Scholar 

  • Llewelyn J, Phillips BL, Alford RA, Schwarzkopf L, Shine R (2010) Locomotor performance in an invasive species: cane toads from the invasion front have greater endurance, but not speed, compared to conspecifics from a long-colonised area. Oecologia 162:343–348

    Article  PubMed  Google Scholar 

  • Lodge DM (1993) Biological invasions: lessons for ecology. Trends Ecol Evol 8:133–137

    Article  CAS  PubMed  Google Scholar 

  • Lorch PD, Sword GA, Gwynne DT, Anderson GL (2005) Radio telemetry reveals differences in individual movement patterns between outbreak and non-outbreak Mormon cricket populations. Ecol Entomol 30:548–555

    Article  Google Scholar 

  • Loughman ZJ, Skalican KT, Taylor ND (2013) Habitat selection and movement of Cambarus chasmodactylus (Decapoda: Cambaridae) assessed via radio telemetry. Freshw Sci 32:1288–1297

    Article  Google Scholar 

  • Lowe S, Browne M, Boudjelas S, De Poorter M (2000) 100 of the world’s worst invasive alien species: a selection from the global invasive species database. Species Survival Commission, World Conservation Union, Auckland

    Google Scholar 

  • Medina-Vogel G, Barros M, Organ JF, Bonesi L (2013) Coexistence between the southern river otter and the alien invasive North American mink in marine habitats of southern Chile. J Zool 290:27–34

    Article  Google Scholar 

  • Muhlfeld CC, McMahon TE, Belcer D, Kershner JL (2009) Spatial and temporal spawning dynamics of native westslope cutthroat trout, Oncorhynchus clarkii lewisi, introduced rainbow trout, Oncorhynchus mykiss, and their hybrids. Can J Fish Aquat Sci 66:1153–1168

    Article  Google Scholar 

  • Noatch MR, Suski CD (2012) Non-physical barriers to deter fish movements. Env Rev 20:71–82

    Article  Google Scholar 

  • Nolfo LE, Hammond EE (2006) A novel method for capturing and implanting radio transmitters in nutria. Wildl Soc Bull 34:104–110

    Article  Google Scholar 

  • Parkes JP, Ramsey DS, Macdonald N, Walker K, McKnight S, Cohen BS, Morrison SA (2010) Rapid eradication of feral pigs (Sus scrofa) from Santa Cruz Island, California. Biol Conserv 143:634–641

    Article  Google Scholar 

  • Patterson TA, Thomas L, Wilcox C, Ovaskainen O, Matthiopolous J (2008) State–space models of individual animal movement. Trends Ecol Evol 23:87–94

    Article  PubMed  Google Scholar 

  • Pernas T, Giardina DJ, McKinley A, Parns A, Mazzotti FJ (2012) First observations of nesting by the Argentine black and white tegu, Tupinambis merianae, in South Florida. Southeast Nat 11:765–770

    Article  Google Scholar 

  • Puth LM, Post DM (2005) Studying invasion: have we missed the boat? Ecol Lett 8:715–721

    Article  Google Scholar 

  • Recio MR, Mathieu R, Latham MC, Latham ADM, Seddon PJ (2013) Quantifying fine-scale resource selection by introduced European hedgehogs (Erinaceus europaeus) in ecologically sensitive areas. Biol Invasions 15:1807–1818

    Article  Google Scholar 

  • Reinhardt UG, Binder THO, McDonald DG (2009) Ability of adult sea lamprey to climb inclined surfaces. Am Fish Soc Symp 72:125–138

    Google Scholar 

  • Ricciardi A, Rasmussen JB (1998) Predicting the identity and impact of future biological invaders: a priority for aquatic resource management. Can J Fish Aquat Sci 55:1759–1765

    Article  Google Scholar 

  • Ringler D, Russell J, Jaeger A, Pinet P, Bastien M, Le Corre M (2014) Invasive rat space use on tropical islands: implications for bait broadcast. Basic Appl Ecol 15:179–186

    Article  Google Scholar 

  • Russell JC, Beaven BM, McKay JW, Towns DR, Clout MN (2008) Testing island biosecurity systems for invasive rats. Wildl Res 35:215–221

    Article  Google Scholar 

  • Rutz C, Hays GC (2009) New frontiers in biologging science. Biol Lett 5:289–292

    Article  PubMed  PubMed Central  Google Scholar 

  • Simberloff D (2009) We can eliminate invasions or live with them. Successful management projects. Biol Invasions 11:149–157

    Article  Google Scholar 

  • Simberloff D (2012) Risks of biological control for conservation purposes. Biocontrol 57:263–276

    Article  Google Scholar 

  • Sparks RE, Barkley TL, Creque SM, Dettmers JM, Stainbrook KM (2010) Evaluation of an electric fish dispersal barrier in the Chicago Sanitary and Ship Canal. Am Fish Soc Symp 74:121–137

    Google Scholar 

  • Spear D, Chown SL (2009) Non-indigenous ungulates as a threat to biodiversity. J Zool 279:1–17

    Article  Google Scholar 

  • Spencer P, Giustiniano D, Hampton JO, Gee P, Burrows N, Rose K, Martin GR, Woolnough AP (2012) Identification and management of a single large population of wild dromedary camels. J Wildl Manag 76:1254–1263

    Article  Google Scholar 

  • Spicer P, Gaston K (2009) Physiological diversity: ecological implications. Wiley, London

    Google Scholar 

  • Taylor D, Katahira L (1988) Radio telemetry as an aid in eradicating remnant feral goats. Wildl Soc Bull 16:297–299

    Google Scholar 

  • Thomas MH, Randall A (2000) Intentional introductions of nonindigenous species: a principal-agent model and protocol for revocable decisions. Ecol Econ 34:333–345

    Article  Google Scholar 

  • Thomson Scientific (2014) Institute for Scientific Information Web of Science. Stamford, Connecticut: Thomson Scientific. http://isiknowledge.com. Accessed 31 March 2014

  • Thorstad EB, Heggberget TG, Økland F (1998) Migratory behaviour of adult wild and escaped farmed Atlantic salmon, Salmo salar L., before, during and after spawning in a Norwegian river. Aquac Res 29:419–428

    Article  Google Scholar 

  • Thresher RE, Kuris AM (2004) Options for managing invasive marine species. Biol Invasions 6:295–300

    Article  Google Scholar 

  • Wiens JD, Anthony RG, Forsman ED (2014) Competitive interactions and resource partitioning between northern spotted owls and barred owls in western Oregon. Wildl Monogr 185:1–50

    Article  Google Scholar 

  • Wikelski M, Cooke SJ (2006) Conservation physiology. Trends Ecol Evol 21:38–46

    Article  PubMed  Google Scholar 

  • Wikelski M, Kays RW, Kasdin NJ, Thorup K, Smith JA, Swenson GW (2007) Going wild: what a global small-animal tracking system could do for experimental biologists. J Exp Biol 210:181–186

    Article  PubMed  Google Scholar 

  • Williamson M, Fitter A (1996) The varying success of invaders. Ecology 77:1661–1666

    Article  Google Scholar 

  • Wilmers CC, Nickel B, Bryce CM, Smith JA, Wheat RE, Yovovich V (2015) The golden age of bio-logging: how animal-borne sensors are advancing the frontiers of ecology. Ecology 96:1741–1753

    Article  PubMed  Google Scholar 

  • Wilson ADM, Wikelski M, Wilson RP, Cooke SJ (2015) Utility of biological sensor tags in animal conservation. Conserv Biol 29:1065–1075

    Article  CAS  PubMed  Google Scholar 

  • Woolnough AP, Lowe TJ, Rose K (2006) Can the Judas technique be applied to pest birds? Wildl Res 33:449–455

    Article  Google Scholar 

  • Zimmermann EW, Purchase CF, Fleming IA, Brattey J (2013) Dispersal of wild and escapee farmed Atlantic cod (Gadus morhua) in Newfoundland. Can J Fish Aquat Sci 70:747–755

    Article  Google Scholar 

  • Zschille J, Stier N, Roth M (2008) Radio tagging American mink (Mustela vison)—experience with collar and intraperitoneal-implanted transmitters. Eur J Wildl Res 54:263–268

    Article  Google Scholar 

  • Zschille J, Stier N, Roth M, Mayer R (2014) Feeding habits of invasive American mink (Neovison vison) in northern Germany—potential implications for fishery and waterfowl. Acta Theriol 59:25–34

    Article  Google Scholar 

Download references

Acknowledgments

Julia Redfern kindly provided comments on the first version of the manuscript. RJL was supported by an NSERC graduate scholarship. GBD and SJC were supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grants and SJC was further supported by the Canada Research Chairs Program. We thank Maxime Veilleux, Mike Rochford, Lauren Harrington, and Tyler Black for the excellent photographs for Box 1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Lennox.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lennox, R.J., Blouin-Demers, G., Rous, A.M. et al. Tracking invasive animals with electronic tags to assess risks and develop management strategies. Biol Invasions 18, 1219–1233 (2016). https://doi.org/10.1007/s10530-016-1071-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-016-1071-z

Keywords

Navigation