Skip to main content
Log in

Tomato terpene synthases TPS5 and TPS39 account for a monoterpene linalool production in tomato fruits

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Recombinant tomato terpene synthases, TPS5/37/39, catalyze the formation of linalool or nerolidol in vitro. However, little is known about their actual biological activities in tomato plants, especially in their fruits. Here, when all three TPSs were induced in tomato fruits by a chemical elicitor, geraniol, a significant linalool peak was detected in fruit tissues but not in control fruits. Considering the compartments of these TPS proteins and available substrates, the linalool peak induced by geraniol might be attributed to TPS5 and TPS37, both of them putatively localized in the plastids where high levels of monoterpene substrate geranyl diphosphate exist. In addition, application of geraniol also triggered jasmonic acid (JA)-related defense genes suggesting that the inducible TPSs might be correlated with JA-signaled defense responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ament K, Kant MR, Sabelis MW, Haring MA, Schuurink RC (2004) Jasmonic acid is a key regulator of spider mite-induced volatile terpenoid and methyl salicylate emission in tomato. Plant Physiol 135:2025–2037

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Arimura G, Garms S, MaVei M, Bossi S, Schulze B, Leitner M, Mithöfer A, Boland W (2008) Herbivore-induced terpenoid emission in Medicago truncatula: concerted action of jasmonate, ethylene and calcium signaling. Planta 227:453–464

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Barbagallo RP, Oxborough K, Pallet KE, Baker NR (2003) Rapid, noninvasive screening for perturbations of metabolism and plant growth using chlorophyll fluorescence imaging. Plant Physiol 132:485–493

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen F, Tholl D, Bohlmann J, Pichersky E (2011) The family of terpene synthases in plants: a mid-size family of genes for specialized metabolism that is highly diversified throughout the kingdom. Plant J 66:212–229

    Article  CAS  PubMed  Google Scholar 

  • Crowell AL, Williams DC, Davis EM, Wildung MR, Croteau R (2002) Molecular cloning and characterization of a new linalool synthase. Arch Biochem Biophys 405:112–121

    Article  CAS  PubMed  Google Scholar 

  • Davidovich-Rikanati R, Sitrit Y, Tadmor Y, Iijima Y, Bilenko N, Bar E, Carmona B, Fallik E, Dudai N, Simon JE, Pichersky E, Lewinsohn E (2007) Enrichment of tomato flavor by diversion of the early plastidial terpenoid pathway. Nat Biotechnol 25:899–901

    Article  CAS  PubMed  Google Scholar 

  • de Carvalho CCR, da Fonseca M (2006) Biotransformation of terpenes. Biotechnol Adv 24:134–142

    Article  PubMed  Google Scholar 

  • Demyttenaere JC, del Herrera-Carmen M, De Kimpe N (2000) Biotransformation of geraniol, nerol and citral by sporulated surface cultures of Aspergillus niger and Penicillium sp. Phytochemistry 55:363–373

    Article  CAS  PubMed  Google Scholar 

  • Dudareva N, Pichersky E, Gershenzon J (2004) Biochemistry of plant volatiles. Plant Physiol 135:1893–1902

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Falara V, Akhtar TA, Nguyen TTH, Spyropoulou EA, Bleeker PM, Schauvinhold I, Matsuba Y, Bonini ME, Schilmiller AL, Last RL, Schuurink RC, Pichersky E (2011) The tomato terpene synthase gene family. Plant Physiol 157:770–789

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Goff SA, Klee HJ (2006) Plant volatile compounds: sensory cues for health and nutritional value. Science 311:815–819

    Article  CAS  PubMed  Google Scholar 

  • Huang M, Abel C, Sohrabi R, Petri J, Haupt I, Cosimano J, Gershenzon J, Tholl D (2010) Arabidopsis ecotypes depends on allelic differences and subcellular targeting of two terpene synthases, TPS02 and TPS03. Plant Physiol 153:1293–1310

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Izumi S, Takashima O, Hirata T (1999) Geraniol is a potent inducer of apoptosis-like cell death in the cultured shoot primordia of Matricaria chamomilla. Biochem Biophys Res Commun 259:519–522

    Article  CAS  PubMed  Google Scholar 

  • Kant MR, Ament K, Sabelis MW, Haring MA, Schuurink RC (2004) Differential timing of spider mite-induced direct and indirect defenses in tomato plants. Plant Physiol 135:483–495

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Keasling JD (2010) Manufacturing molecules through metabolic engineering. Science 330:1355–1388

    Article  CAS  PubMed  Google Scholar 

  • Landmann C, Fink B, Festner M, Dregus M, Engel KH, Schwab W (2007) Cloning and functional characterization of three terpene synthases from lavender (Lavandula angustifolia). Arch Biochem Biophys 465:417–429

    Article  CAS  PubMed  Google Scholar 

  • Li CY, Liu GH, Xu CC, Lee GI, Bauer P, Ling HQ, Ganal MW, Howea GA (2003) The tomato suppressor of prosystemin-mediated responses 2 gene encodes a fatty acid desaturase required for the biosynthesis of jasmonic acid and the production of a systemic wound signal for defense gene expression. Plant Cell 15:1646–1661

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lindmark-Henriksson M, Isaksson D, Vanek T, Högberg-ValterováI HE, Sjödin K (2004) Transformation of terpenes using a Picea abies suspension culture. J Biotechnol 107:173–184

    Article  CAS  PubMed  Google Scholar 

  • Martin DM, Aubourg S, Schouwey MB, Daviet L, Schalk M, Toub O, Lund ST, Bohlmann J (2010) Functional annotation, genome organization and phylogeny of the grape vine (Vitis vinifera) terpene synthase gene family based on genome assembly, FLcDNA cloning, and enzyme assays. BMC Plant Biol 10:226

    Article  PubMed Central  PubMed  Google Scholar 

  • Nagegowda DA, Gutensohn M, Wilkerson CG, Dudareva N (2008) Two nearly identical terpene synthases catalyze the formation of nerolidol and linalool in snapdragon flowers. Plant J 55:224–239

    Article  CAS  PubMed  Google Scholar 

  • Nieuwenhuizen NJ, Green SA, Chen X, Bailleul EJD, Matich AJ, Wang MY, Atkinson RG (2013) Functional genomics reveals that a compact terpene synthase gene family can account for terpene volatile production in apple. Plant Physiol 161:787–804

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • van Schie CCN, Haring MA, Schuurink RC (2007) Tomato linalool synthase is induced in trichomes by jasmonic acid. Plant Mol Biol 64:251–263

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Education Department Fund of Sichuan Province (No. 13ZD1110) and the Internal Fund of Southwest University of Science and Technology (No. 20145030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shanglian Hu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Y., Hu, S., Dai, Q. et al. Tomato terpene synthases TPS5 and TPS39 account for a monoterpene linalool production in tomato fruits. Biotechnol Lett 36, 1717–1725 (2014). https://doi.org/10.1007/s10529-014-1533-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-014-1533-2

Keywords

Navigation