Skip to main content
Log in

Unmanned aerial vehicles UAVs attitude, height, motion estimation and control using visual systems

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

This paper presents an implementation of an aircraft pose and motion estimator using visual systems as the principal sensor for controlling an Unmanned Aerial Vehicle (UAV) or as a redundant system for an Inertial Measure Unit (IMU) and gyros sensors. First, we explore the applications of the unified theory for central catadioptric cameras for attitude and heading estimation, explaining how the skyline is projected on the catadioptric image and how it is segmented and used to calculate the UAV’s attitude. Then we use appearance images to obtain a visual compass, and we calculate the relative rotation and heading of the aerial vehicle. Additionally, we show the use of a stereo system to calculate the aircraft height and to measure the UAV’s motion. Finally, we present a visual tracking system based on Fuzzy controllers working in both a UAV and a camera pan and tilt platform. Every part is tested using the UAV COLIBRI platform to validate the different approaches, which include comparison of the estimated data with the inertial values measured onboard the helicopter platform and the validation of the tracking schemes on real flights.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Antonisse, H. J. (1982). Image segmentation in pyramids. Computer Vision, Graphics, and Image Processing, 19(4), 367–383.

    Article  Google Scholar 

  • Ashbrook, A. P. (1992). Evaluations of the Susan corner detection algorithm (Tech. rep.). Electronic System group, Department of Electronic and Electrical Engineering, University of Sheffield, UK.

  • Baker, S., & Nayar, S. K. (1999). A theory of single-viewpoint catadioptric image formation. International Journal of Computer Vision, 35(2), 1–22.

    Article  Google Scholar 

  • Barreto, Ja, & Araujo, H. (2001). Issues on the geometry of central catadioptric image formation. Computer Vision and Pattern Recognition. doi: 10.1109/CVPR.2001.990992.

    Google Scholar 

  • Barreto, Ja, & Araujo, H. (2002). Geometric properties of central catadioptric line images. In ECCV ’02: proceedings of the 7th European conference on computer vision, part IV (pp. 237–251). London: Springer.

    Google Scholar 

  • Beyeler, A., Zufferey, J. C., & Floreano, D. (2009). Vision-based control of near-obstacle flight. Autonomous Robots, 27(3), 201–219. doi: 10.1007/s10514-009-9139-6.

    Article  Google Scholar 

  • Campoy, P., Correa, J., Mondragon, I., Martinez, C., Olivares, M., Mejias, L., & Artieda, J. (2008). Computer vision onboard UAVs for civilian tasks. Journal of Intelligent and Robotic Systems. doi: 10.1007/s10846-008-9256-z.

    MATH  Google Scholar 

  • Carnie, R., Walker, R., & Corke, P. (2006). Image processing algorithms for UAV “sense and avoid”. In Robotics and Automation. doi: 10.1109/ROBOT.2006.1642133.

  • Cheng, Y., Maimone, M. W., & Matthies, L. (2006). Visual odometry on the Mars exploration rovers. IEEE Robotics and Automation magazine, 13(2), 54–62.

    Article  Google Scholar 

  • COLIBRI. (2009). Universidad Politécnica de Madrid. Computer Vision Group. COLIBRI Project. http://www.disam.upm.es/colibri.

  • Conroy, J., Gremillion, G., Ranganathan, B., & Humbert, J. S. (2009). Implementation of wide-field integration of optic flow for autonomous quadrotor navigation. Autonomous Robots, 27(3), 189–198. doi: 10.1007/s10514-009-9140-0.

    Article  Google Scholar 

  • Corke, P., Strelow, D., & Singh, S. (2004). Omnidirectional visual odometry for a planetary rover. In IEEE/RSJ international conference on intelligent robots and systems, Japan.

  • Cornall, T., & Egan, G. (2004). Measuring horizon angle from video on a small unmanned air vehicle. In 2nd international conference on autonomous robots and agents.

  • Cornall, T., Egan, G., & Price, A. (2006). Aircraft attitude estimation from horizon video. Electronics Letters, 42(13), 744–745. doi: 10.1049/el:20060547.

    Article  Google Scholar 

  • Demonceaux, C., Vasseur, P., & Pgard, C. (2006). Omnidirectional vision on UAV for attitude computation. In IEEE international conference on robotics and automation (ICRA’06) (pp. 2842–2847). Orlando: IEEE.

    Google Scholar 

  • Dusha, D., Boles, W., & Walker, R. (2007). Fixed-wing attitude estimation using computer vision based horizon detection. In: Proceedings 12th Australian international aerospace congress (pp. 1–19), Melbourne, Australia.

  • Ettinger, S. M. Nechyba, M. C., Ifju, P. G., Waszak, M. (2002). Vision-guided flight stability and control for micro air vehicles. In IEEE international conference on intelligent robots and systems. New York: IEEE.

    Google Scholar 

  • Geyer, C., & Daniilidis, K. (2000). A unifying theory for central panoramic systems and practical applications. In ECCV (Vol. 2, pp. 445–461).

  • Geyer, C., & Daniilidis, K. (2001). Catadioptric projective geometry. Journal of Computer Vision, 43, 223–243.

    Article  Google Scholar 

  • Hrabar, S., & Sukhatme, G. (2003). Omnidirectional vision for an autonomous helicopter. In IEEE international conference on robotics and automation (pp. 558–563).

  • Hrabar, S., & Sukhatme, G. (2009). Vision-based navigation through urban canyons. Journal of Field Robotics, 26(5), 431–452. doi: 10.1002/rob.v26:5.

    Article  Google Scholar 

  • Hrabar, S., Sukhatme, G., Corke, P., Usher, K., & Roberts, J. (2005). Combined optic-flow and stereo-based navigation of urban canyons for a UAV. Intelligent Robots and Systems. doi: 10.1109/IROS.2005.1544998.

    Google Scholar 

  • Kendoul, F., Nonami, K., Fantoni, I., & Lozano, R. (2009). An adaptive vision-based autopilot for mini flying machines guidance, navigation and control. Autonomous Robots, 27(3), 165–188. doi: 10.1007/s10514-009-9135-x.

    Article  Google Scholar 

  • Labrosse, F. (2006). The visual compass: performance and limitations of an appearance-based method. Journal of Field Robotics, 23(10), 913–941.

    Article  Google Scholar 

  • Lucas, B. D., & Kanade, T. (1981). An iterative image registration technique with an application to stereo vision. In Proceedings of the 7th IJCAI (pp. 674–679), Vancouver, Canada.

  • Martin, J., & Crowley, J. (1995). Experimental comparison of correlation techniques (Tech. rep.). IMAG-LIFIA, 46 Av. Félix Viallet, 38031 Grenoble, France.

  • Matthies, L. (1989). Dynamic stereo vision. Cmu-cs-89-195, Carnegie Mellon University. Computer Science Department.

  • Mejias, L. (2006). Control visual de un vehiculo aereo autonomo usando detección y seguimiento de características en espacios exteriores. PhD thesis, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid, Spain.

  • Mejias, L., Saripalli, S., Campoy, P., & Sukhatme, G. (2006). Visual servoing of an autonomous helicopter in urban areas using feature tracking. Journal of Field Robotics, 23(3–4), 185–199.

    Article  Google Scholar 

  • Mejias, L., Campoy, P., Mondragon, I., & Doherty, P. (2007). Stereo visual system for autonomous air vehicle navigation. In 6th IFAC symposium on intelligent autonomous vehicles (IAV 07), Toulouse, France.

  • Milella, A., & Siegwart, R. (2006). Stereo-based ego-motion estimation using pixel tracking and iterative closest point. In Proceedings of the fourth IEEE international conference on computer vision systems (p. 21). Washington: IEEE Computer Society.

    Chapter  Google Scholar 

  • Nayar, S., & Baker, S. (1997). A theory of catadioptric image formation (Technical report CUCS-015-97). Department of Computer Science, Columbia University.

  • Nikolos, I. K., Tsourveloudis, N. C., & Valavanis, K. P. (2004). A uav vision system for airborne surveillance. In Proceedings of the IEEE international conference on robotics and automation (ICRA ’04) (pp. 77–83), New Orleans, LA, USA.

  • Nistér, D., Naroditsky, O., & Bergen, J. (2006). Visual odometry for ground vehicle applications. Journal of Field Robotics, 23(1), 3–20.

    Article  MATH  Google Scholar 

  • Olivares, M., & Madrigal, J. (2007). Fuzzy logic user adaptive navigation control system for mobile robots in unknown environments. Intelligent Signal Processing. doi: 10.1109/WISP.2007.4447633.

    Google Scholar 

  • Olivares, M., Campoy, P., Correa, J., Martinez, C., & Mondragon, I. (2008). Fuzzy control system navigation using priority areas. In Proceedings of the 8th international FLINS conference (pp. 987–996), Madrid, Spain.

  • Olivares-Mendez, M. A., Campoy, P., Mondragon, I., & Martinez, C. (2009a). A pan-tilt camera fuzzy vision controller on an unmanned aerial vehicle. In IEEE/RSJ international conference on intelligent robots and systems (IROS09).

  • Olivares-Mendez, M. A., Campoy, P., Mondragon, I., & Martinez, C. (2009b). Visual servoing using fuzzy controllers on an unmanned aerial vehicle. In Eurofuse workshop 09, preference modelling and decision analysis.

  • Puri, A., Valavanis, K., & Kontitsis, M. (2007). Statistical profile generation for traffic monitoring using real-time UAV based video data. In Mediterranean conference on control and automation (MED’07) (pp. 1–6).

  • Scaramuzza, D., & Siegwart, R. (2008). Appearance guided monocular omnidirectional visual odometry for outdoor ground vehicles. IEEE Transactions on Robotics, 24(5), 1015–1026.

    Article  Google Scholar 

  • Todorovic, S., Nechyba, M., & Ifju, P. (2003). Sky/ground modeling for autonomous MAV flight. Robotics and Automation. doi: 10.1109/ROBOT.2003.1241791.

    MATH  Google Scholar 

  • Ying, X. & Hu, Z. (2004). Catadioptric camera calibration using geometric invariants. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(10), 1260–1271. doi: 10.1109/TPAMI.2004.79.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iván F. Mondragón.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mondragón, I.F., Olivares-Méndez, M.A., Campoy, P. et al. Unmanned aerial vehicles UAVs attitude, height, motion estimation and control using visual systems. Auton Robot 29, 17–34 (2010). https://doi.org/10.1007/s10514-010-9183-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-010-9183-2

Keywords

Navigation