Skip to main content
Log in

The sensory ego-sphere: a mediating interface between sensors and cognition

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

The Sensory Ego-Sphere (SES) is an interface for a robot that serves to mediate information between sensors and cognition. The SES can be visualized as a sphere centered on the coordinate frame of the robot, spatially indexed by polar and azimuthal angles. Internally, the SES is a graph with a fixed number of edges that partitions surrounding space and contains localized sensor information from the robot. This paper describes the SES and gives the results of implementing the SES on multiple robots, both humanoid and mobile, to support essential functions such as a localized short-term memory, spatio-temporal sensory-motor event detection, attentional processing, data sharing, and ego-centric navigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albus, J. S. (1991). Outline for a theory of intelligence. IEEE Transactions on Systems, Man, and Cybernetics, 21(3), 473–509.

    Article  MathSciNet  Google Scholar 

  • Ambrose, R. O., Aldridge, H., Askew, R. S., Burridge, R. R., Bluethmann, W., Diftler, M., Lovchik, C., Magruder, D., & Rehnmark, F. (2000). Robonaut: NASA’s space humanoid. IEEE Intelligent Systems, 15(4), 57–63.

    Article  Google Scholar 

  • Bluethmann, W., Ambrose, R., Diftler, M., Huber, E., Fagg, A., Rosenstein, M., Platt, R., Grupen, R., Breazeal, C., Brooks, A., Lockerd, A., Peters II, R. A., Jenkins, O. C., Mataric, M., & Bugajska, M. (2004). Building an autonomous tool user. In Proceedings of the IEEE/RAS international conference on humanoid robots (Humanoids 2004) (Vol. 1, pp. 402–421). Santa Monica, CA.

  • Brill, F. Z., Martin, W. N., & Olson, T. J. (1995). Markers elucidated and applied in local 3-space. In Proceedings of the 1995 IEEE symposium on computer vision (pp. 49–54).

  • Cave, K. R. (1999). The featuregate model of visual selection. Psychological Research, 62, 182–194.

    Article  Google Scholar 

  • Cohen, P. R., & Adams, N. (2001). An algorithm for segmenting categorical time series into meaningful episodes. In Proceedings of the fourth symposium on intelligent data analysis (Vol. 2189, pp. 198–207).

  • Diftler, M. A., Platt, R. J. Jr., Culbert, C. J., Ambrose, R. O., & Bluethmann, W. J. (2003). Evolution of the NASA/DARPA robonaut control system. In Proceedings of the 2003 IEEE international conference on robots and automation (ICRA 2003), Taipei, Taiwan.

  • Edmondson, A. C. (1987). A fuller explanation: the synergetic geometry of R. Buckminster fuller. Boston: Birkhauser.

    Google Scholar 

  • Edsinger, A. L. (2007). Robot manipulation in human environments. Ph.D. Dissertation, Massachusetts Institute of Technology.

  • Edsinger, A., & Kemp, C. C. (2006). What can i control? A framework for robot self-discovery. In Proceedings of the sixth international conference on epigenetic robotics (EpiRob 2006), National Institute of Information and Communications Technology, Japan.

  • Elfes, A. (1989). Using occupancy grids for mobile robot perception and navigation. IEEE Computer Magazine, 46–57.

  • Fitzpatrick, P. (2003). From first contact to close encounters: A developmentally deep perceptual system for a humanoid robot. Ph.D. Dissertation, Massachusetts Institute of Technology.

  • Fitzpatrick, P. (2004). The dayone project: how far can a robot develop in 24 hours? In L. Berthouzeand, H. Kozima, C. G. Prince, G. Sandini, G. Stojanov, G. Metta, & C. Balkenius (Eds.), Lund University Cognitive Studies: Vol. 117. Proceedings of fourth international workshop on epigenetic robotics. Lund University.

  • Fleming, K. A., Peters II, R. A., & Bodenheimer, R. E. (2006). Image mapping and visual attention on a sensory ego-sphere. In Proceedings of the 2006 IEEE international conference on intelligent robots and systems (IROS 2006) (pp. 2656–2662). Beijing, China.

  • Frei, W., & Chen, C.-C. (1977). Fast boundary detection: a generalization and a new algorithm. IEEE Transactions on Computers, 10, 988–998.

    Article  Google Scholar 

  • Grupen, R. A. (2004). Integrating manual dexterity with mobility for human-scale service robotics: the case for concentrated research into science and technology supporting next-generation robotic assistants. Web published. http://www-robotics.cs.umass.edu/~grupen/whitepaper-mobmanip.pdf.

  • Hall, D. L., & Linas, J. (2001). Handbook of multisensor data fusion. Boca Raton: CRC Press.

    Google Scholar 

  • Hambuchen, K. A. (2004). Multi-modal attention and event binding in humanoid robots using a sensory ego-sphere. Ph.D. Dissertation, Vanderbilt University.

  • Hambuchen, K. A., Bluethmann, W. J., Goza, S. M., Ambrose, R. O., Rabe, K. J., & Allan, M. B. (2006). Supervising remote humanoids across intermediate time delay. In Proceedings of the IEEE/RAS international conference on humanoid robots (Humanoids 2005) (pp. 246–251). Genoa, Italy.

  • Johnson, C. A., Adams, J. A., & Kawamura, K. (2003). Evaluation of an enhanced human-robot interface. In Proceedings of the 2003 IEEE international conference on systems, man and cybernetics (Vol. 1, pp. 900–905).

  • Kawamura, K., Dodd, W., & Gutierrez, R. A. (2005). Development of a robot with a sense of self. In Proceedings of the 6th IEEE international symposium on computational intelligence in robotics and automation (CIRA) (pp. 65–93).

  • Kawamura, K., Gordon, S., Ratanaswasd, P., Garber, C., & Erdemir, E. (2007). Implementation of cognitive control for robots. In Proceedings of the 4th COE workshop on human adaptive mechatronics (HAM).

  • Kawamura, K., Koku, A. B., Wilkes, D. M., Peters II, R. A., & Sekmen, A. (2002). Toward egocentric navigation. International Journal of Robotics and Automation, 17(4), 135–145.

    Google Scholar 

  • Kawamura, K., Peters II, R. A., Bodenheimer, R. E., Sarkar, N., Park, J., Spratley, A., & Hambuchen, K. A. (2004). A multiagent-based cognitive robot architecture and its realization. International Journal of Humanoid Robotics, 1(1), 65–93.

    Article  Google Scholar 

  • Kawamura, K., Peters II, R. A., Wilkes, D. M., Alford, W. A., & Rogers, T. E. (2000). Isac: foundations of human-humanoid interaction. IEEE Intelligent Systems, 15(4), 38–45.

    Article  Google Scholar 

  • Keskinpala, T., Wilkes, D. M., Kawamura, K., & Koku, A. B. (2003). Knowledge-sharing techniques for egocentric navigation. In Proceedings of the 2003 IEEE international conference on systems, man and cybernetics (Vol. 3, pp. 2469–2476).

  • Lang, S., Kleinehagenbrock, M., Hohenner, S., Fritsch, J., Fink, G. A., & Sagerer, G. (2003). Providing the basis for human-robot-interaction: a multi-modal attenion system for a mobile robot. In Proceedings of the international conference on mutlimodal interfaces.

  • Marr, D. (1971). Simple memory: a theory for archicortex. Philosophical Transactions of the Royal Society of London B, 262, 23–81.

    Article  Google Scholar 

  • Marr, D., & Hildreth, E. (1980). Theory of edge detection. Proceedings of the Royal Society of London B, 207, 187–217.

    Article  Google Scholar 

  • Matarić, M. M. (1992). Integration of representation into goal-driven behavior-based robots. IEEE Transactions on Robotics and Automation, 8(3), 304–312.

    Article  Google Scholar 

  • Moravec, H. P. (1996). Robot spatial perception by stereoscopic vision and 3d evidence grids. (Technical Report CMU-RI-TR-96-34). Pittsburgh, Pennsylvania: Carnegie Mellon University, The Robotics Institute.

  • Peters II, R. A. (2004). Architecture for robot intelligence. U.S. Patent 6,697,707, 24 Feb 2004. Vanderbilt University, Nashville.

  • Peters II, R. A., Wilkes, D. M., Gaines, D. M., & Kawamura, K. (1999). A software agent-based control system for human-robot interaction. In Proceedings of 2nd international symposium on humanoid robotics (HURO ’99). Tokyo.

  • Recce, M. M., & Harris, K. D. (1996). Memory for places: a navigational model in support of marr’s theory of hippocampal function. Hippocampus, 6, 735–748.

    Article  Google Scholar 

  • Rogers, T. E. (2003). The human agent: A model for human-robot interaction. Ph.D. Dissertation, Vanderbilt University.

  • Scassellati, B. (1998). Imitation and mechanisms of joint attention: a developmental structure for building social skills on a humanoid robot. In C. Nehaniv (Ed.), Springer Lecture Notes in Artificial Intelligence: Vol. 1562. Computation for metaphors, analogy and agents. Berlin: Springer.

    Google Scholar 

  • Soyer, C., Bozma, H. I., & Istefanopulos, Y. (2000). A new memory model for selective perception systems. In Proceedings of IEEE/RSJ international conference on robots and systems, Takamatsu, Japan.

  • Stewart, I. (1991). Circularly covering clatharin. Nature, 351, 103.

    Article  Google Scholar 

  • Sun, L. (2004). Binocular vision system for a humanoid robot. Master’s Thesis, Vanderbilt University.

  • Thrun, S. (1998). Learning metric-topological maps for indoor mobile robot navigation. Artificial Intelligence, 99(3), 27–71.

    Google Scholar 

  • Thrun, S. (2002). Robotic mapping: a survey. In G. Lakemeyer & B. Nebel (Eds.), Exploring artificial intelligence in the new millenium. San Mateo: Morgan Kaufmann.

    Google Scholar 

  • Trullier, O., Wiener, S., Berthoz, A., & Meyer, J. (1997). Biologically-based artificial navigation systems: review and prospects. Progress in Neurobiology, 51, 483–544.

    Article  Google Scholar 

  • Urner, K. (1991). The invention behind the inventions: synergetics in the 1990’s. The Synergetica Journal, 1(1).

  • Wasson, G. S. (1999). Design of representation systems for autonomous agents. Ph.D. Dissertation, University of Virginia.

  • Wasson, G., Kortenkamp, D., & Huber, E. (1998). Integrating active perception with an autonomous robot architecture. In K. P. Sycara & M. Wooldridge (Eds.), Proceedings of the 2nd international conference on autonomous agents (Agents’98) (pp. 325–331). New York: Assoc. Comput. Mach.

    Chapter  Google Scholar 

  • Wheeler, K. R., Martin, R., Allan, M. B., & Sunspiral, V. (2005). Predictive interfaces for long-distance tele-operations. In Proceedings of the 8th international symposium on artificial intelligence, robotics and automation in space (i-SAIRAS).

  • Yarger, R. J., Reese, G., & King, T. (1999). MySQL and mSQL. O’Reilly and Associates.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Alan Peters II.

Additional information

This research was supported in part by DARPA-IPTO grant DASG60-99-1-0005, and NASA-JSC grants NAG9-1428, NAG9-1446 and NAG9-1515.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peters, R.A., Hambuchen, K.A. & Bodenheimer, R.E. The sensory ego-sphere: a mediating interface between sensors and cognition. Auton Robot 26, 1–19 (2009). https://doi.org/10.1007/s10514-008-9098-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-008-9098-3

Keywords

Navigation