Skip to main content

Advertisement

Log in

Cryptotanshinone induces G1 cell cycle arrest and autophagic cell death by activating the AMP-activated protein kinase signal pathway in HepG2 hepatoma

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

AMP-activated protein kinase (AMPK) performs a pivotal function in energy homeostasis via the monitoring of intracellular energy status. Once activated under the various metabolic stress conditions, AMPK regulates a multitude of metabolic pathways to balance cellular energy. In addition, AMPK also induces cell cycle arrest or apoptosis through several tumor suppressors including LKB1, TSC2, and p53. LKB1 is a direct upstream kinase of AMPK, while TSC2 and p53 are direct substrates of AMPK. Therefore, it is expected that activators of AMPK signal pathway might be useful for treatment or prevention of cancer. In the present study, we report that cryptotanshinone, a natural compound isolated from Salvia miltiorrhiza, robustly activated AMPK signaling pathway, including LKB1, p53, TSC2, thereby leading to suppression of mTORC1 in a number of LKB1-expressing cancer cells including HepG2 human hepatoma, but not in LKB1-deficient cancer cells. Cryptotanshinone induced HepG2 cell cycle arrest at the G1 phase in an AMPK-dependent manner, and a portion of cells underwent apoptosis as a result of long-term treatment. It also induced autophagic HepG2 cell death in an AMPK-dependent manner. Cryptotanshinone significantly attenuated tumor growth in an HCT116 cancer xenograft in vivo model, with a substantial activation of AMPK signal pathways. Collectively, we demonstrate for the first time that cryptotanshinone harbors the therapeutic potential for the treatment of cancer through AMPK activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hardie DG, Carling D, Carlson M (1998) The AMP-activated/SNF1 protein kinase subfamily: metabolic sensors of the eukaryotic cell? Annu Rev Biochem 67:821–855

    Article  CAS  PubMed  Google Scholar 

  2. Woods A, Johnstone SR, Dickerson K, Leiper FC, Fryer LG, Neumann D, Schlattner U, Wallimann T, Carlson M, Carling D (2003) LKB1 is the upstream kinase in the AMP-activated protein kinase cascade. Curr Biol 13:2004–2008

    Article  CAS  PubMed  Google Scholar 

  3. Woods A, Dickerson K, Heath R, Hong SP, Momcilovic M, Johnstone SR, Carlson M, Carling D (2005) Ca2+/calmodulin-dependent protein kinase kinase-beta acts upstream of AMP-activated protein kinase in mammalian cells. Cell Metab 2:21–33

    Article  CAS  PubMed  Google Scholar 

  4. Momcilovic M, Hong SP, Carlson M (2006) Mammalian TAK1 activates Snf1 protein kinase in yeast and phosphorylates AMP-activated protein kinase in vitro. J Biol Chem 281:25336–25343

    Article  CAS  PubMed  Google Scholar 

  5. Hardie DG (2007) AMP-activated protein kinase as a drug target. Annu Rev Pharmacol Toxicol 47:185–210

    Article  CAS  PubMed  Google Scholar 

  6. Kahn BB, Alquier T, Carling D, Hardie DG (2005) AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab 1:15–25

    Article  CAS  PubMed  Google Scholar 

  7. Shackelford DB, Shaw RJ (2009) The LKB1–AMPK pathway: metabolism and growth control in tumour suppression. Nat Rev Cancer 9:563–575

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Jones RG, Plas DR, Kubek S, Buzzai M, Mu J, Xu Y, Birnbaum MJ, Thompson CB (2005) AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. Mol Cell 18:283–293

    Article  CAS  PubMed  Google Scholar 

  9. Inoki K, Ouyang H, Zhu T, Lindvall C, Wang Y, Zhang X, Yang Q, Bennett C, Harada Y, Stankunas K, Wang CY, He X, MacDougald OA, You M, Williams BO, Guan KL (2006) TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth. Cell 126:955–968

    Article  CAS  PubMed  Google Scholar 

  10. Hemminki A, Markie D, Tomlinson I, Avizienyte E, Roth S, Loukola A, Bignell G, Warren W, Aminoff M, Höglund P, Järvinen H, Kristo P, Pelin K, Ridanpää M, Salovaara R, Toro T, Bodmer W, Olschwang S, Olsen AS, Stratton MR, de la Chapelle A, Aaltonen LA (1998) A serine/threonine kinase gene defective in Peutz–Jeghers syndrome. Nature 391:184–187

    Article  CAS  PubMed  Google Scholar 

  11. Krymskaya VP (2003) Tumour suppressors hamartin and tuberin: intracellular signalling. Cell Signal 15:729–739

    Article  CAS  PubMed  Google Scholar 

  12. Galluzzi L, Vicencio JM, Kepp O, Tasdemir E, Maiuri MC, Kroemer G (2008) To die or not to die: that is the autophagic question. Curr Mol Med 8:78–91

    Article  CAS  PubMed  Google Scholar 

  13. Eskelinen EL (2011) The dual role of autophagy in cancer. Curr Opin Pharmacol 11:294–300

    Article  CAS  PubMed  Google Scholar 

  14. Inoki K, Zhu T, Guan KL (2003) TSC2 mediates cellular energy response to control cell growth and survival. Cell 115:577–590

    Article  CAS  PubMed  Google Scholar 

  15. Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Turk BE, Shaw RJ (2008) AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell 30:214–226

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Kim J, Kundu M, Viollet B, Guan KL (2011) AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 13:132–141

    Article  CAS  PubMed  Google Scholar 

  17. Egan DF, Shackelford DB, Mihaylova MM, Gelino S, Kohnz RA, Mair W, Vasquez DS, Joshi A, Gwinn DM, Taylor R, Asara JM, Fitzpatrick J, Dillin A, Viollet B, Kundu M, Hansen M, Shaw RJ (2011) Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 331:456–461

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Landman GW, Kleefstra N, van Hateren KJ, Groenier KH, Gans RO, Bilo HJ (2010) Metformin associated with lower cancer mortality in type 2 diabetes: ZODIAC-16. Diabetes Care 33:322–326

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Bo S, Ciccone G, Rosato R, Villois P, Appendino G, Ghigo E, Grassi G (2012) Cancer mortality reduction and metformin: a retrospective cohort study in type 2 diabetic patients. Diabetes Obes Metab 14:23–29

    Article  CAS  PubMed  Google Scholar 

  20. Gallagher EJ, LeRoith D (2011) Diabetes, cancer, and metformin: connections of metabolism and cell proliferation. Ann NY Acad Sci 1243:54–68

    Article  CAS  PubMed  Google Scholar 

  21. Viollet B, Guigas B, Sanz Garcia N, Leclerc J, Foretz M, Andreelli F (2012) Cellular and molecular mechanisms of metformin: an overview. Clin Sci (Lond) 122:253–270

    Article  CAS  Google Scholar 

  22. Kim EJ, Jung SN, Son KH, Kim SR, Ha TY, Park MG, Jo IG, Park JG, Choe W, Kim SS, Ha J (2007) Antidiabetes and antiobesity effect of cryptotanshinone via activation of AMP-activated protein kinase. Mol Pharmacol 72:62–72

    Article  CAS  PubMed  Google Scholar 

  23. Suh SJ, Jin UH, Choi HJ, Chang HW, Son JK, Lee SH, Jeon SJ, Son KH, Chang YC, Lee YC, Kim CH (2006) Cryptotanshinone from Salvia miltiorrhiza BUNGE has an inhibitory effect on TNF-α-induced matrix metalloproteinase-9 production and HASMC migration via down-regulated NF-κB and AP-1. Biochem Pharmacol 72:1680–1689

    Article  CAS  PubMed  Google Scholar 

  24. Park IJ, Kim MJ, Park OJ, Choe W, Kang I, Kim SS, Ha J (2012) Cryptotanshinone induces ER stress-mediated apoptosis in HepG2 and MCF7 cells. Apoptosis 17:248–257

    Article  CAS  PubMed  Google Scholar 

  25. Park IJ, Kim MJ, Park OJ, Park MG, Choe W, Kang I, Kim SS, Ha J (2010) Cryptotanshinone sensitizes DU145 prostate cancer cells to Fas (APO1/CD95)-mediated apoptosis through Bcl-2 and MAPK regulation. Cancer Lett 298:88–98

    Article  CAS  PubMed  Google Scholar 

  26. Yun H, Kim HS, Lee S, Kang I, Kim SS, Choe W, Ha J (2009) AMP kinase signaling determines whether c-Jun N-terminal kinase promotes survival or apoptosis during glucose deprivation. Carcinogenesis 30:529–537

    Article  CAS  PubMed  Google Scholar 

  27. Schwartz GK, Shah MA (2005) Targeting the cell cycle: a new approach to cancer therapy. J Clin Oncol 23:9408–9421

    Article  CAS  PubMed  Google Scholar 

  28. Johnson DG, Ohtani K, Nevins JR (1994) Autoregulatory control of E2F1 expression in response to positive and negative regulators of cell cycle progression. Genes Dev 8:1514–1525

    Article  CAS  PubMed  Google Scholar 

  29. Choi SL, Kim SJ, Lee KT, Kim J, Mu J, Birnbaum MJ, Kim SS, Ha J (2001) The regulation of AMP-activated protein kinase by H(2)O(2). Biochem Biophys Res Commun 287:92–97

    Article  CAS  PubMed  Google Scholar 

  30. Alers S, Loffler AS, Wesselborg S, Stork B (2012) Role of AMPK-mTOR-Ulk1/2 in the regulation of autophagy: cross talk, shortcuts, and feedbacks. Mol Cell Biol 32:2–11

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, Kominami E, Ohsumi Y, Yoshimori T (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 19:5720–5728

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Mizushima N, Sugita H, Yoshimori T, Ohsumi Y (1998) A new protein conjugation system in human. The counterpart of the yeast Apg12p conjugation system essential for autophagy. J Biol Chem 273:33889–33892

    Article  CAS  PubMed  Google Scholar 

  33. Suzuki K, Kirisako T, Kamada Y, Mizushima N, Noda T, Ohsumi Y (2001) The pre-autophagosomal structure organized by concerted functions of APG genes is essential for autophagosome formation. EMBO J 20:5971–5981

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Mizushima N, Yoshimori T, Levine B (2010) Methods in mammalian autophagy research. Cell 140:313–326

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Eskelinen EL (2008) To be or not to be? Examples of incorrect identification of autophagic compartments in conventional transmission electron microscopy of mammalian cells. Autophagy 4:257–260

    PubMed  Google Scholar 

  36. Xu D, Lin TH, Li S, Da J, Wen XQ, Ding J, Chang C, Yeh S (2012) Cryptotanshinone suppresses androgen receptor-mediated growth in androgen dependent and castration resistant prostate cancer cells. Cancer Lett 316:11–22

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Lu Y, Foo LY (2002) Polyphenolics of Salvia—a review. Phytochemistry 59:117–140

    Article  CAS  PubMed  Google Scholar 

  38. Pierotti MA, Berrino F, Gariboldi M, Melani C, Mogavero A, Negri T, Pasanisi P, Pilotti S (2012) Targeting metabolism for cancer treatment and prevention: metformin, an old drug with multi-faceted effects. Oncogene 181:1–13. doi:10.1038/onc.2012

    Google Scholar 

  39. Dowling RJ, Niraula S, Stambolic V, Goodwin PJ (2012) Metformin in cancer: translational challenges. J Mol Endocrinol 48:R31–R43

    Article  CAS  PubMed  Google Scholar 

  40. Zhuang Y, Miskimins WK (2008) Cell cycle arrest in Metformin treated breast cancer cells involves activation of AMPK, downregulation of cyclin D1, and requires p27Kip1 or p21Cip1. J Mol Signal 3:18

    Article  PubMed Central  PubMed  Google Scholar 

  41. Zhao L, Wen ZH, Jia CH, Li M, Luo SQ, Bai XC (2011) Metformin induces G1 cell cycle arrest and inhibits cell proliferation in nasopharyngeal carcinoma cells. Anat Rec (Hoboken) 294:1337–1343

    Article  CAS  Google Scholar 

  42. Memmott RM, Dennis PA (2009) LKB1 and mammalian target of rapamycin as predictive factors for the anticancer efficacy of metformin. J Clin Oncol 27:e226 (author reply e227)

    Article  PubMed  Google Scholar 

  43. Hadad SM, Fleming S, Thompson AM (2008) Targeting AMPK: a new therapeutic opportunity in breast cancer. Crit Rev Oncol Hematol 67:1–7

    Article  PubMed  Google Scholar 

  44. Qu X, Yu J, Bhagat G, Furuya N, Hibshoosh H, Troxel A, Rosen J, Eskelinen EL, Mizushima N, Ohsumi Y, Cattoretti G, Levine B (2003) Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J Clin Invest 112:1809–1820

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Mathew R, Karantza-Wadsworth V, White E (2007) Role of autophagy in cancer. Nat Rev Cancer 7:961–967

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Shi WY, Xiao D, Wang L, Dong LH, Yan ZX, Shen ZX, Chen SJ, Chen Y, Zhao WL (2012) Therapeutic metformin/AMPK activation blocked lymphoma cell growth via inhibition of mTOR pathway and induction of autophagy. Cell Death Dis 3:e275

    Article  PubMed Central  PubMed  Google Scholar 

  47. Dat NT, Jin X, Lee JH, Lee D, Hong YS, Lee K, Kim YH, Lee JJ (2007) Abietane diterpenes from Salvia miltiorrhiza inhibit the activation of hypoxia-inducible factor-1. J Nat Prod 70:1093–1097

    Article  CAS  PubMed  Google Scholar 

  48. Jin DZ, Yin LL, Ji XQ, Zhu XZ (2006) Cryptotanshinone inhibits cyclooxygenase-2 enzyme activity but not its expression. Eur J Pharmacol 549:166–172

    Article  CAS  PubMed  Google Scholar 

  49. Shin DS, Kim HN, Shin KD, Yoon YJ, Kim SJ, Han DC, Shin DS, Kim HN, Shin KD, Yoon YJ, Kim SJ, Han DC, Kwon BM (2009) Cryptotanshinone inhibits constitutive signal transducer and activator of transcription 3 function through blocking the dimerization in DU145 prostate cancer cells. Cancer Res 69:193–202

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (No. 20120009381).

Conflict of interest

No conflict of interest is declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joohun Ha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, IJ., Yang, W.K., Nam, SH. et al. Cryptotanshinone induces G1 cell cycle arrest and autophagic cell death by activating the AMP-activated protein kinase signal pathway in HepG2 hepatoma. Apoptosis 19, 615–628 (2014). https://doi.org/10.1007/s10495-013-0929-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-013-0929-0

Keywords

Navigation