Skip to main content

Advertisement

Log in

Chk1 has an essential role in the survival of differentiated cortical neurons in the absence of DNA damage

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Neuronal death in the central nervous system contributes to the development of age-related neurodegeneration. The ATR/Chk1 pathway appears to function neuroprotectively to prevent DNA damage induced by cytotoxic agents. Here, we examine the function of Chk1 on cell viability of cortical neurons in the absence of additional DNA damaging stimuli. The Chk1-specific inhibitor, UCN-01, and the ATR inhibitor, Caffeine, cause neuronal apoptosis in differentiated neurons in the absence of additional treatment, whereas inhibition of ATM or Chk2, does not. UCN-01 treatment increased the detection of γ-H2AX phosphorylation, DNA strand breaks, and an activated p53-dependent DNA damage response (DDR), suggesting that Chk1 normally helps to maintain genomic stability. UCN-01 treatment also enhanced the apoptosis seen in neurons treated with DNA damaging agents, such as camptothecin (CPT). Our results indicate that Chk1 is essential for neuronal survival, and perturbation of this pathway increases a cell’s sensitivity to naturally accumulating DNA damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cha RS, Kleckner N (2002) ATR homolog Mec1 promotes fork progression, thus averting breaks in replication slow zones. Science 297:602–606

    Article  PubMed  CAS  Google Scholar 

  2. Ward IM, Minn K, Chen J (2004) UV-induced ataxia-telangiectasia-mutated and Rad3-related (ATR) activation requires replication stress. J Biol Chem 279:9677–9680

    Article  PubMed  CAS  Google Scholar 

  3. Martin LJ, Liu Z, Pipino J, Chestnut B, Landek MA (2009) Molecular regulation of DNA damage-induced apoptosis in neurons of cerebral cortex. Cereb Cortex 19:1273–1293

    Article  PubMed  Google Scholar 

  4. Zachos G, Rainey MD, Gillespie DA (2003) Chk1-deficient tumour cells are viable but exhibit multiple checkpoint and survival defects. EMBO J 22:713–723

    Article  PubMed  CAS  Google Scholar 

  5. Syljuasen RG, Sorensen CS, Hansen LT et al (2005) Inhibition of human Chk1 causes increased initiation of DNA replication, phosphorylation of ATR targets, and DNA breakage. Mol Cell Biol 25:3553–3562

    Article  PubMed  CAS  Google Scholar 

  6. Brown EJ, Baltimore D (2000) ATR disruption leads to chromosomal fragmentation and early embryonic lethality. Genes Dev 14:397–402

    PubMed  CAS  Google Scholar 

  7. Takai H, Tominaga K, Motoyama N et al (2000) Aberrant cell cycle checkpoint function and early embryonic death in Chk1(−/−) mice. Genes Dev 14:1439–1447

    PubMed  CAS  Google Scholar 

  8. Casper AM, Nghiem P, Arlt MF, Glover TW (2002) ATR regulates fragile site stability. Cell 111:779–789

    Article  PubMed  CAS  Google Scholar 

  9. Durkin SG, Arlt MF, Howlett NG, Glover TW (2006) Depletion of CHK1, but not CHK2, induces chromosomal instability and breaks at common fragile sites. Oncogene 25:4381–4388

    Article  PubMed  CAS  Google Scholar 

  10. Davis ST, Benson BG, Bramson HN et al (2001) Prevention of chemotherapy-induced alopecia in rats by CDK inhibitors. Science 291:134–137

    Article  PubMed  CAS  Google Scholar 

  11. Kubo A, Nakagawa K, Varma RK et al (1999) The p16 status of tumor cell lines identifies small molecule inhibitors specific for cyclin-dependent kinase 4. Clin Cancer Res 5:4279–4286

    PubMed  CAS  Google Scholar 

  12. Ye W, Blain SW (2010) S phase entry causes homocysteine-induced death while ataxia telangiectasia and Rad3 related protein functions anti-apoptotically to protect neurons. Brain 133:2295–2312

    PubMed  Google Scholar 

  13. Crouch SP, Kozlowski R, Slater KJ, Fletcher J (1993) The use of ATP bioluminescence as a measure of cell proliferation and cytotoxicity. J Immunol Methods 160:81–88

    Article  PubMed  CAS  Google Scholar 

  14. James MK, Ray A, Leznova D, Blain SW (2008) Differential modification of p27Kip1 controls its cyclin D-cdk4 inhibitory activity. Mol Cell Biol 28:498–510

    Article  PubMed  CAS  Google Scholar 

  15. Tice RR, Agurell E, Anderson D et al (2000) Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagen 35:206–221

    Article  PubMed  CAS  Google Scholar 

  16. Ye W, Zhang L (2004) Heme deficiency causes apoptosis but does not increase ROS generation in HeLa cells. Biochem Biophys Res Commun 319:1065–1071

    Article  PubMed  CAS  Google Scholar 

  17. Martinez G, Di Giacomo C, Carnazza ML et al (1997) MAP2, synaptophysin immunostaining in rat brain and behavioral modifications after cerebral postischemic reperfusion. Dev Neurosci 19:457–464

    Article  PubMed  CAS  Google Scholar 

  18. Sarkaria JN, Busby EC, Tibbetts RS et al (1999) Inhibition of ATM and ATR kinase activities by the radiosensitizing agent, caffeine. Cancer Res 59:4375–4382

    PubMed  CAS  Google Scholar 

  19. Zhao B, Bower MJ, McDevitt PJ et al (2002) Structural basis for Chk1 inhibition by UCN-01. J Biol Chem 277:46609–46615

    Article  PubMed  CAS  Google Scholar 

  20. Celeste A, Fernandez-Capetillo O, Kruhlak MJ et al (2003) Histone H2AX phosphorylation is dispensable for the initial recognition of DNA breaks. Nat Cell Biol 5:675–679

    Article  PubMed  CAS  Google Scholar 

  21. Sionov RV, Haupt Y (1999) The cellular response to p53: the decision between life and death. Oncogene 18:6145–6157

    Article  PubMed  CAS  Google Scholar 

  22. Murphy PJ, Galigniana MD, Morishima Y et al (2004) Pifithrin-alpha inhibits p53 signaling after interaction of the tumor suppressor protein with hsp90 and its nuclear translocation. J Biol Chem 279:30195–30201

    Article  PubMed  CAS  Google Scholar 

  23. Kondratov RV, Komarov PG, Becker Y, Ewenson A, Gudkov AV (2001) Small molecules that dramatically alter multidrug resistance phenotype by modulating the substrate specificity of P-glycoprotein. Proc Natl Acad Sci USA 98:14078–14083

    Article  PubMed  CAS  Google Scholar 

  24. Strom E, Sathe S, Komarov PG et al (2006) Small-molecule inhibitor of p53 binding to mitochondria protects mice from gamma radiation. Nat Chem Biol 2:474–479

    Article  PubMed  CAS  Google Scholar 

  25. Morris EJ, Geller HM (1996) Induction of neuronal apoptosis by camptothecin, an inhibitor of DNA topoisomerase-I: evidence for cell cycle-independent toxicity. J Cell Biol 134:757–770

    Article  PubMed  CAS  Google Scholar 

  26. Park DS, Morris EJ, Greene LA, Geller HM (1997) G1/S cell cycle blockers and inhibitors of cyclin-dependent kinases suppress camptothecin-induced neuronal apoptosis. J Neurosci 17:1256–1270

    PubMed  CAS  Google Scholar 

  27. Seshadri S, Beiser A, Selhub J et al (2002) Plasma homocysteine as a risk factor for dementia and Alzheimer’s disease. N Engl J Med 346:476–483

    Article  PubMed  CAS  Google Scholar 

  28. Mizrahi EH, Bowirrat A, Jacobsen DW et al (2004) Plasma homocysteine, vitamin B12 and folate in Alzheimer’s patients and healthy Arabs in Israel. J Neurol Sci 227:109–113

    Article  PubMed  CAS  Google Scholar 

  29. Agnati LF, Genedani S, Rasio G et al (2005) Studies on homocysteine plasma levels in Alzheimer’s patients. Relevance for neurodegeneration. J Neural Transm 112:163–169

    Article  PubMed  CAS  Google Scholar 

  30. Ruzankina Y, Pinzon-Guzman C, Asare A, Ong T, Pontano L, Cotsarelis G, Zediak VP, Velez M, Bhandoola A, Brown EJ (2007) Deletion of the developmentally essential gene ATR in adult mice leads to age-related phenotypes and stem cell loss. Cell Stem Cell 1:113–126

    Article  PubMed  CAS  Google Scholar 

  31. Pauklin S, Kristjuhan A, Maimets T, Jaks V (2005) ARF and ATM/ATR cooperate in p53-mediated apoptosis upon oncogenic stress. Biochem Biophys Res Commun 334:386–394

    Article  PubMed  CAS  Google Scholar 

  32. Liu Q, Guntuku S, Cui XS et al (2000) Chk1 is an essential kinase that is regulated by ATR and required for the G(2)/M DNA damage checkpoint. Genes Dev 14:1448–1459

    Article  PubMed  CAS  Google Scholar 

  33. Takai H, Naka K, Okada Y et al (2002) Chk2-deficient mice exhibit radioresistance and defective p53-mediated transcription. EMBO J 21:5195–5205

    Article  PubMed  CAS  Google Scholar 

  34. Friedberg EC (2005) Suffering in silence: the tolerance of DNA damage. Nat Rev Mol Cell Biol 6:943–953

    Article  PubMed  CAS  Google Scholar 

  35. Zhang Y, Qu D, Morris EJ et al (2006) The Chk1/Cdc25A pathway as activators of the cell cycle in neuronal death induced by camptothecin. J Neurosci 26:8819–8828

    Article  PubMed  CAS  Google Scholar 

  36. Wohlbold L, Fisher RP (2009) Behind the wheel and under the hood: functions of cyclin-dependent kinases in response to DNA damage. DNA Repair (Amst) 8:1018–1024

    Article  CAS  Google Scholar 

  37. Satyanarayana A, Berthet C, Lopez-Molina J, Coppola V, Tessarollo L, Kaldis P (2008) Genetic substitution of Cdk1 by Cdk2 leads to embryonic lethality and loss of meiotic function of Cdk2. Development 135:3389–3400

    Article  PubMed  CAS  Google Scholar 

  38. Vogel C, Hager C, Bastians H (2007) Mechanisms of mitotic cell death induced by chemotherapy-mediated G2 checkpoint abrogation. Cancer Res 67:339–345

    Article  PubMed  CAS  Google Scholar 

  39. Tse AN, Schwartz GK (2004) Potentiation of cytotoxicity of topoisomerase I poison by concurrent and sequential treatment with the checkpoint inhibitor UCN-01 involves disparate mechanisms resulting in either p53-independent clonogenic suppression or p53-dependent mitotic catastrophe. Cancer Res 64:6635–6644

    Article  PubMed  CAS  Google Scholar 

  40. Myers K, Gagou ME, Zuazua-Villar P, Rodriguez R, Meuth M (2009) ATR and Chk1 suppress a caspase-3-dependent apoptotic response following DNA replication stress. PLoS Genet 5:e1000324

    Article  PubMed  Google Scholar 

  41. Evans TA, Raina AK, Delacourte A et al (2007) BRCA1 may modulate neuronal cell cycle re-entry in Alzheimer disease. Int J Med Sci 4:140–145

    PubMed  CAS  Google Scholar 

  42. Thakur A, Siedlak SL, James SL et al (2008) Retinoblastoma protein phosphorylation at multiple sites is associated with neurofibrillary pathology in Alzheimer disease. Int J Clin Exp Pathol 1:134–146

    PubMed  CAS  Google Scholar 

  43. Lanni C, Racchi M, Stanga S et al (2010) Unfolded p53 in blood as a predictive signature signature of the transition from mild cognitive impairment to Alzheimer’s disease. J Alzheimers Dis 20:97–104

    PubMed  CAS  Google Scholar 

  44. Wilson C, Henry S, Smith MA, Bowser R (2004) The p53 homologue p73 accumulates in the nucleus and localizes to neurites and neurofibrillary tangles in Alzheimer disease brain. Neuropathol Appl Neurobiol 30:19–29

    Article  PubMed  CAS  Google Scholar 

  45. Zhu X, Raina AK, Boux H, Simmons ZL, Takeda A, Smith MA (2000) Activation of oncogenic pathways in degenerating neurons in Alzheimer disease. Int J Dev Neurosci 18:433–437

    Article  PubMed  CAS  Google Scholar 

  46. McShea A, Wahl AF, Smith MA (1999) Re-entry into the cell cycle: a mechanism for neurodegeneration in Alzheimer disease. Med Hypotheses 52:525–527

    Article  PubMed  CAS  Google Scholar 

  47. Jordan-Sciutto KL, Malaiyandi LM, Bowser R (2002) Altered distribution of cell cycle transcriptional regulators during Alzheimer disease. J Neuropathol Exp Neurol 61:358–367

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. William Oxberry for help with confocal microscopy techniques. This work was supported by a grant from the American Cancer Society to S.W.B.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stacy W. Blain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ye, W., Blain, S.W. Chk1 has an essential role in the survival of differentiated cortical neurons in the absence of DNA damage. Apoptosis 16, 449–459 (2011). https://doi.org/10.1007/s10495-011-0579-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-011-0579-z

Keywords

Navigation