Skip to main content
Log in

Dihydroceramide hinders ceramide channel formation: Implications on apoptosis

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Early in apoptosis, ceramide levels rise and the mitochondrial outer membrane becomes permeable to small proteins. The self-assembly of ceramide to form channels could be the means by which intermembrane space proteins are released to induce apoptosis. Dihydroceramide desaturase converts dihydroceramide to ceramide. This conversion may be removing an inhibitor as well as generating a pro-apoptotic agent. We report that both long and short chain dihydroceramides inhibit ceramide channel formation in mitochondria. One tenth as much dihydroceramide was sufficient to inhibit the permeabilization of the outer membrane by about 95% (C2) and 51% (C16). Similar quantities inhibited the release of carboxyfluorescein from liposomes indicating that other mitochondrial components are not necessary for the inhibition. The apoptogenic activity of ceramide may thus depend on the ceramide to dihydroceramide ratio resulting in a more abrupt transition from the normal to the apoptotic state when the de novo pathway is used in mitochondria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CF:

carboxyfluorescein

C2-ceramide:

N-acetyl-D-erythro-sphingosine

C16-ceramide:

N-palmitoyl-D-erythro-sphingosine

DHC2 :

N-acetyl-D-erythro-sphinganine or C2-dihydroceramide

DHC16 :

N-palmitoyl-erythro-sphinganine or C16-dihydroceramide

DPX:

p-xylene-bis-pyridinium bromide

References

  1. Hannun YA. Functions of ceramide in coordinating cellular responses to stress. Science 1996; 274(5294): 1855–1859.

    Article  PubMed  CAS  Google Scholar 

  2. Kolesnick R, Fuks Z. Radiation and ceramide-induced apoptosis. Oncogene 2003; 22(37): 5897–5906.

    Article  PubMed  CAS  Google Scholar 

  3. Reynolds CP, Maurer BJ, Kolesnick RN. Ceramide synthesis and metabolism as a target for cancer therapy. Cancer Lett 2004; 206(2): 169–180.

    Article  PubMed  CAS  Google Scholar 

  4. Grassme H, Jekle A, Riehle A, et al. CD95 signaling via ceramide-rich membrane rafts. J Biol Chem 2001; 276: 20589–20596.

    Article  PubMed  CAS  Google Scholar 

  5. Grassme H, Schwarz H, Gulbins E. Molecular mechanisms of ceramide-mediated CD95 clustering. Biochem Biophys Res Commun 2001; 284: 1016–1030.

    Article  PubMed  CAS  Google Scholar 

  6. Cremesti A, Paris F, Grassme H, et al. Ceramide enables Fas to cap and kill. J Biol Chem 2001; 276: 23954–23961.

    Article  CAS  Google Scholar 

  7. Miyaji M, Jin ZX, Yamaoka S, et al. Role of membrane sphingomyelin and ceramide in platform formation for Fas-mediated apoptosis. J Exp Med 2005; 202(2): 249–259.

    Article  PubMed  CAS  Google Scholar 

  8. Gulbins E, Kolesnick R. Raft ceramide in molecular medicine. Oncogene 2003; 22: 7070–7077.

    Article  PubMed  CAS  Google Scholar 

  9. Willaime S, Vanhoutte P, Caboche J, Lemaigre-Dubreuil Y, Mariani J, Brugg B. Ceramide-induced apoptosis in cortical neurons is mediated by an increase in p38 phosphorylation and not by the decrease in ERK phosphorylation. Eur J Neurosci 2001; 13: 2037–2046.

    Article  PubMed  CAS  Google Scholar 

  10. Kitatani K, Akiba S, Hayama M, Sato T. Ceramide accelerates dephosphorylation of extracellular signal-regulated kinase 1/2 to decrease prostaglandin D(2) production in RBL-2H3 cells. Arch Biochem Biophys 2001; 395: 208–214.

    Article  PubMed  CAS  Google Scholar 

  11. Shin CY, Lee YP, Lee TS, Song HJ, Sohn UD. C(2)-ceramide-induced circular smooth muscle cell contraction involves PKC-epsilon and p44/p42 MAPK activation in cat oesophagus. Mitogen-activated protein kinase. Cell Signalling 2002. 14: 925–932.

    Article  PubMed  CAS  Google Scholar 

  12. Willaime-Morawek S, Brami-Cherrier K, Mariani J, Caboche J, Brugg B. C-Jun N-terminal kinases/c-Jun and p38 pathways cooperate in ceramide-induced neuronal apoptosis. Neuroscience 2003; 119: 387–397.

    Article  PubMed  CAS  Google Scholar 

  13. Stoica BA, Movsesyan VA, Knoblach SM, Faden AI. Ceramide induces neuronal apoptosis through mitogen-activated protein kinases and causes release of multiple mitochondrial proteins. Mol Cell Neurosci 2005; 29(3): 355–371.

    Article  PubMed  CAS  Google Scholar 

  14. Wang G, Silva J, Krishnamurthy K, Tran E, Condie BG, Bieberich E. Direct binding to ceramide activates protein kinase Czeta before the formation of a pro-apoptotic complex with PAR-4 in differentiating stem cells. J Biol Chem 2005; 280(28): 26415–26424.

    Article  PubMed  CAS  Google Scholar 

  15. Siskind LJ, Colombini M. The lipids C2- and C16-ceramide form large stable channels. Implications for apoptosis. J Biol Chem 2000; 275(49): 38640–38644.

    Article  PubMed  CAS  Google Scholar 

  16. Zamzami N, Marchetti P, Castedo M, et al. Sequential reduction of mitochondrial transmembrane potential and generation of reactive oxygen species in early programmed cell death. J Exp Med 1995; 182: 367–377.

    Article  PubMed  CAS  Google Scholar 

  17. Castedo M, Hirsch T, Susin SA, et al. Sequential acquisition of mitochondrial and plasma membrane alterations during early lymphocyte apoptosis. J Immunol 1996; 157: 512–521.

    PubMed  CAS  Google Scholar 

  18. Susin SA, Zamzami N, Larochette N, et al. Cytofluorometric assay of nuclear apoptosis induced in a cell-free system: Application to ceramide-induced apoptosis. Exp Cell Res 1997; 236: 397–403.

    Article  PubMed  CAS  Google Scholar 

  19. De Maria R, Lenti L, Malisan F, et al. Requirement for GD3 ganglioside in CD95- and ceramide-induced apoptosis. Science 1997; 277: 1652–1655.

    Article  Google Scholar 

  20. Arora AS, Jones BJ, Patel TC, Bronk SF, Gores GJ. Ceramide induces hepatocyte cell death through disruption of mitochondrial function in the rat. Hepatology 1997; 25: 958–963.

    Article  PubMed  CAS  Google Scholar 

  21. Di Paola M, Cocco T, Lorusso M. Ceramide interaction with the respiratory chain of heart mitochondria. Biochemistry 2000; 39: 6620–6628.

    Google Scholar 

  22. Ghafourifar P, Klein SD, Schucht O, et al. Ceramide induces cytochrome c release from isolated mitochondria. Importance of mitochondrial redox state. J Biol Chem 1999; 274: 6080–6084.

    Article  PubMed  CAS  Google Scholar 

  23. Siskind LJ, Kolesnick RN, Colombini M. Ceramide channels increase the permeability of the mitochondrial outer membrane to small proteins. J Biol Chem 2002; 277(30): 26796–26803.

    Article  PubMed  CAS  Google Scholar 

  24. Bielawska A, Crane HM, Liotta D, Obeid LM, Hannun YA. Selectivity of ceramide-mediated biology. Lack of activity of erythro-dihydroceramide. J Biol Chem 1993; 268: 26226–26232.

    PubMed  CAS  Google Scholar 

  25. Sugiki H, Hozumi Y, Maeshima H, Katagata Y, Mitsuhashi Y, Kondo S. C2-ceramide induces apoptosis in a human squamous cell carcinoma cell line. Brit J Derm 2000; 143(6): 1154–1163.

    Article  PubMed  CAS  Google Scholar 

  26. Parsons DF, Williams GR, Chance B. Characteristics of isolated and purified preparations of the outer and inner membranes of mitochondria. Ann N Y Acad Sci 1966; 137: 643–666.

    PubMed  CAS  Google Scholar 

  27. Clarke S. A major polypeptide component of rat liver mitochondria: carbamylphosphate synthetase. J Biol Chem 1976; 251: 950–961.

    PubMed  CAS  Google Scholar 

  28. Siskind LJ, Fluss S, Bui M, Colombini M. Sphingosine forms channels that differ greatly from those formed by ceramide. J Bioenerg Biomembr 2005; 37(4): 227–236.

    Article  PubMed  CAS  Google Scholar 

  29. Gruy F, Cournil M, Cugniet P. Influence of nonwetting on the aggregation dynamics of micronic solid particles in a turbulent medium. J Colloid Interface Sci 2005; 284(2): 548–559.

    Article  CAS  Google Scholar 

  30. Siskind LJ. Mitochondrial ceramide and the induction of apoptosis. J Bioenerg Biomemb 2005; 37(3): 143–153.

    Article  CAS  Google Scholar 

  31. Siskind LJ, Davoody A, Lewin N, Marshall S, Colombini M. Enlargement and contracture of C2-ceramide channels. Biophys J 2003; 85(3): 1560–1575.

    Article  PubMed  CAS  Google Scholar 

  32. Tyler D. Respiratory enzyme systems of mitochondria. In: The Mitochondrion in Health & Disease. London: VCH Publishers, Inc., 1992.

    Google Scholar 

  33. Nelson DL, Cox MM. Oxidative phosphorylation and photophosphorylation. In: Lehninger Principles of Biochemistry. 3rd ed. New York: Worth Publishers 2000: 667–671.

    Google Scholar 

  34. Pajewski R, Djedovič N, Harder E, Ferdani R, Schlesinger PH, Gokel GW. Pore formation in and enlargement of phospholipid liposomes by synthetic models of ceramides and sphingomyelin. Bioorg Med Chem 2005; 13(1): 29–37.

    Article  PubMed  CAS  Google Scholar 

  35. Montes LR, Ruiz-Argüello MB, Goñi FM, Alonso A. Membrane restructuring via ceramide results in enhanced solute efflux. J Biol Chem 2002; 277(14): 11788–11794.

    Article  PubMed  CAS  Google Scholar 

  36. García-Ruiz C, Colell A, Mari M, Morales A, Fernandez-Checa JC. Direct effect of ceramide on the mitochondrial electron transport chain leads to generation of reactive oxygen species. Role of mitochondrial glutathione. J Biol Chem 1997; 272: 11369–11377.

    Article  PubMed  Google Scholar 

  37. Corda S, Laplace C, Vicaut E, Duranteau J. Rapid reactive oxygen species production by mitochondria in endothelial cells exposed to Tumor Necrosis Factor-α is mediated by ceramide. Am J Respir Cell Mol Biol 2001; 24(6): 762–768.

    PubMed  CAS  Google Scholar 

  38. Pettus BJ, Chalfant CE, Hannun YA. Ceramide in apoptosis: An overview and current perspectives. Biochim Biophys Acta 2002; 1585: 114–125.

    PubMed  CAS  Google Scholar 

  39. Mandon EC, Ehses I, Rother J, van Echten G and Sandhoff K. Subcellular localization and membrane topology of serine palmitoyltransferase, 3-dehydrosphinganine reductase, and sphinganine N-acyltransferase in mouse liver. J Biol Chem 1992; 267: 11144–11148.

    PubMed  CAS  Google Scholar 

  40. Kroesen BJ, Pettus B, Luberto C, et al. Induction of apoptosis through B-cell receptor cross-linking occurs via de novo generated C16-ceramide and involves mitochondria. J Biol Chem 2001; 276: 13606–13614.

    PubMed  CAS  Google Scholar 

  41. Birbes H, El Bawab S, Hannun YA, Obeid LM. Selective hydrolysis of a mitochondrial pool of sphingomyelin induces apoptosis. FASEB J 2001; 15: 2669–2679.

    Article  PubMed  CAS  Google Scholar 

  42. Perry RJ, Ridgway ND. Molecular mechanism and regulation of ceramide transport. Biochim Biophys Acta 2005; 1734(3): 220–234.

    PubMed  CAS  Google Scholar 

  43. Perry DK. Serine palmitoyltransferase: role in apoptotic de novo ceramide synthesis and other stress responses. Biochim Biophys Acta 2002; 1585(2–3): 146–152.

    PubMed  CAS  Google Scholar 

  44. Petrache I, Natarajan V, Zhen LJ, et al. Ceramide upregulation causes pulmonary cell apoptosis and emphysema-like disease in mice. Nat. Med 2005; 11(5): 491–498.

    Article  PubMed  CAS  Google Scholar 

  45. Velasco G, Galve-Roperh I, Sánchez C, Blázquez C, Haro A, Guzmán M. Cannabinoids and ceramide: Two lipids acting hand-by-hand. Life Sci 2005; 77(14): 1723–1731.

    Article  PubMed  CAS  Google Scholar 

  46. Darwiche N, Abou-Lteif G, Najdi T, et al. Human T-cell lymphotropic virus Type I-transformed T cells have a partial defect in ceramide synthesis in response to N-(4-hydroxyphenyl)retinamide. Biochem J 2005; 392: 231–239.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Colombini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stiban, J., Fistere, D. & Colombini, M. Dihydroceramide hinders ceramide channel formation: Implications on apoptosis. Apoptosis 11, 773–780 (2006). https://doi.org/10.1007/s10495-006-5882-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-006-5882-8

Keywords

Navigation