Skip to main content
Log in

Selection of thermotolerant Saccharomyces cerevisiae for high temperature ethanol production from molasses and increasing ethanol production by strain improvement

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

A thermotolerant ethanol fermenting yeast strain is a key requirement for effective ethanol production at high temperature. This work aimed to select a thermotolerant yeast producing a high ethanol concentration from molasses and increasing its ethanol production by mutagenesis. Saccharomyces cerevisiae DMKU 3-S087 was selected from 168 ethanol producing strains because it produced the highest ethanol concentration from molasses at 40 °C. Optimization of molasses broth composition was performed by the response surface method using Box–Behnken design. In molasses broth containing optimal total fermentable sugars (TFS) of 200 g/L and optimal (NH4)2SO4 of 1 g/L, with an initial pH of 5.5 by shaking flask cultivation at 40 °C ethanol, productivity and yield were 58.4 ± 0.24 g/L, 1.39 g/L/h and 0.29 g/g, respectively. Batch fermentation in a 5 L stirred-tank fermenter with 3 L optimized molasses broth adjusted to an initial pH of 5.5 and fermentation controlled at 40 °C and 300 rpm agitation resulted in 72.4 g/L ethanol, 1.21 g/L/h productivity and 0.36 g/g yield at 60 h. Strain DMKU 3-S087 improvement was performed by mutagenesis using ultraviolet radiation and ethyl methane sulfonate (EMS). Six EMS mutants produced higher ethanol (65.2 ± 0.48–73.0 ± 0.54 g/L) in molasses broth containing 200 g/L TFS and 1 g/L (NH4)2SO4 by shake flask fermentation at 37 °C than the wild type (59.8 ± 0.25 g/L). Among these mutants, only mutant S087E100-265 produced higher ethanol (62.5 ± 0.26 g/L) than the wild type (59.5 ± 0.02 g/L) at 40 °C. In addition, mutant S087E100-265 showed better tolerance to high sugar concentration, furfural, hydroxymethylfurfural and acetic acid than the wild type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdel-Banat BA, Hoshida H, Ano A, Nonklang S, Akada R (2010) High-temperature fermentation: how can processes for ethanol production at high temperatures become superior to the traditional process using mesophilic yeast? Appl Microbiol Biotechnol 85:861–867

    Article  CAS  PubMed  Google Scholar 

  • Abubaker HO, Sulieman AME, Elamin HB (2012) Utilization of Schizosaccharomyces pombe for production of ethanol from cane molasses. J Microbiol Res 2:36–40

    Article  Google Scholar 

  • Almeida JR, Modig T, Petersson A, Hähn-Hägerdal B, Lidén G, Gorwa-Grauslund MF (2007) Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J Chem Technol Biotechnol 82:340–349

    Article  CAS  Google Scholar 

  • Auesukaree C, Koedrith P, Saenpayavai P, Asvarak T, Benjaphokee S, Sugiyama M, Kaneko Y, Harashima S, Boonchird C (2012) Characterization and gene expression profiles of thermotolerant Saccharomyces cerevisiae isolates from Thai fruits. J Biosci Bioeng 114:144–149

    Article  CAS  Google Scholar 

  • Banat IM, Nigam P, Singh D, Marchant R, McHale AP (1998) Review: ethanol production at elevated temperatures and alcohol concentrations: part I—yeasts in general. World J Microbiol Biotechnol 14:809–821

    Article  CAS  Google Scholar 

  • Boyer LJ, Vega JL, Klasson KT, Clausen EC, Gaddy JL (1992) The effects of furfural on ethanol production by Saccharomyces cereyisiae in batch culture. Biomass Bioenergy 3:41–48

    Article  CAS  Google Scholar 

  • Bro C, Regenberg B, Forster J, Nielsen J (2006) In silico aided metabolic engineering of Saccharomyces cerevisiae for improved bioethanol production. Metab Eng 8:102–111

    Article  CAS  PubMed  Google Scholar 

  • Brooks AA (2008) Ethanol production potential of local yeast strains isolated from ripe banana peels. Afr J Biotechnol 7:3749–3752

    CAS  Google Scholar 

  • Ҫakar F, Ӧzer I, Özhan Aytekin A, Şahin F (2014a) Improvement production of bacterial cellulose by semi-continuous process in molasses medium. Carbohydr Polym 106:7–13

    Article  CAS  Google Scholar 

  • Ҫakar F, Ӧzer I, Özhan Aytekin A, Şahin F (2014b) Improvement production of bacterial cellulose by semi-continuous process in molasses medium. Carbohydr Polym 106:7–13

    Article  CAS  Google Scholar 

  • Capiaghi C, Ho V, Thoma F (2004) Kinetochores prevent repair of UV damage in Saccharomyces cerevisiae centromeres. Mol Cell Biol 24:6907–6918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chi Z, Arnebory N (2000) Saccharomyces cerevisiae strains with different degrees of ethanol tolerance exhibit different adaptive responses to produced ethanol. J Ind Microbiol Biotechnol 24:75–78

    Article  CAS  Google Scholar 

  • Choi GW, Um HJ, Kim Y, Kang HW, Kim M, Chung BW, Kim YH (2010) Isolation and characterization of two soil derived yeasts for bioethanol production on cassava starch. Biomass Bioenergy 34:1223–1231

    Article  CAS  Google Scholar 

  • Curran BPG, Khalawan SA (1994) Alcohols lower the threshold temperature for the maximal activation of a heat shock expression vector in the yeast Saccharomyces cerevisiae. Microbiology 140:2225–2228

    Article  CAS  PubMed  Google Scholar 

  • Dhaliwal SS, Oberoi HS, Sandhu SK, Nanda D, Kumar D, Uppal SK (2011) Enhanced ethanol production from sugarcane juice by galactose adaptation of a newly isolated thermotolerant strain of Pichia kudriavzevii. Bioresour Technol 102:5968–5975

    Article  CAS  PubMed  Google Scholar 

  • Edgardo A, Carolina P, Manuel R, Juanita F, Jaime B (2008) Selection of thermotolerant yeast strains Saccharomyces cerevisiae for bioethanol production. Enzyme Microb Technol 43:120–123

    Article  CAS  Google Scholar 

  • French CT, Ross CD, Keysar SB, Joshi DD, Lim CU, Fox MH (2006) Comparison of the mutagenic potential of 17 physical and chemical agents analyzed by the flow cytometry mutation assay. Mutat Res 602:14–25

    Article  CAS  PubMed  Google Scholar 

  • Gasmalla MAA, Yang R, Nikoo M, Man S (2012) Production of ethanol from Sudanese sugar cane molasses and evaluation of its quality. J Food Process Technol 3:1–3

    Google Scholar 

  • Gibson BR, Lawrence SJ, Leclair JP, Powell CD, Smart KA (2007) Yeast responses to stresses associated with industrial brewery handling. FEMS Microbiol Rev 31:535–569

    Article  CAS  PubMed  Google Scholar 

  • Hamouda HI, Nassar HN, Madian HR, Abu Amr SS, EI-Gendy NS (2015a) Statistical optimization of batch ethanol fermentation of sugarcane molasses by Candida tropicalis strain HSC-24. Int J Chemtech Res 8:878–889

    CAS  Google Scholar 

  • Hamouda HI, Nassar HN, Madian HR, Abu Amr SS, EI-Gendy NS (2015b) Response surface optimization of bioethanol production from sugarcane molasses by Pichia veronae strain HSC-22. Biotechnol Res Int 2015:905792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu N, Yuan B, Sun J, Wang SA, Li FL (2012) Thermotolerant Kluyeromyces marxianus and Saccharomyces cerevisiae strains representing potentials for bioethanol production from Jerusalem artichoke by consolidated bioprocessing. Appl Microbiol Biotechnol 95:1359–1368

    Article  CAS  Google Scholar 

  • Hughes SR, Gibbons WR, Bang SS, Pinkelman R, Bischoff KM, Slininger PJ, Qureshi N, Kurtzman CP, Liu SQ, Saha BC, Jackson JS, Catta MA, Rich JO, Javers JE (2012) Random UV-C mutagenesis of Scheffersomyces (formerly Pichia) stipitis NRRL Y-7124 to improve anaerobic growth on lignocellulosic sugars. J Ind Microbiol Biotechnol 39:163–173

    Article  CAS  PubMed  Google Scholar 

  • Kurtzman CP (2011) Pichia E.C. Hansen (1904). In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts, a taxonomic study, 5th edn. Elsevier, Amsterdam, pp 685–707

    Chapter  Google Scholar 

  • Kurtzman CP, Robnett CJ (1998) Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26 S) ribosomal DNA partial sequences. Anton Leeuw 73:331–371

    Article  CAS  Google Scholar 

  • Limtong S, Sringiew C, Yongmanitchai W (2007a) Production of fuel ethanol at high temperature from sugar cane juice by a newly isolated Kluyveromyces marxianus. Bioresour Technol 98:3367–3374

    Article  CAS  PubMed  Google Scholar 

  • Limtong S, Yongmanitchai W, Tun MM, Kawasaki H, Seki T (2007b) Kazachstania siamensis sp. nov., an ascomycetous yeast species from forest soil in Thailand. Int J Syst Evol Microbiol 57:419–422

    Article  PubMed  Google Scholar 

  • Mobini-Dehkordi M, Nahvi I, Zarkesh-Esfahani H, Ghaedi K, Tavassoli M, Akada R (2008) Isolation of a novel mutant strain of Saccharomyces cerevisiae by an ethyl methane sulfonate-induced mutagenesis approach as a high producer of bioethanol. J Biosci Bioeng 105:403–408

    Article  CAS  PubMed  Google Scholar 

  • Modig T, Liden G, Taherzadeh MJ (2002) Inhibition effects of furfural on alcohol dehydrogenase, aldehyde dehydrogenase and pyruvate dehydrogenase. Biochem J 363:769–776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morimura S, Ling ZY, Kida K (1997) Ethanol production by repeated-batch fermentation at high temperature in a molasses medium containing a high concentration of total sugar by a thermotolerant flocculating yeast with improved salt-tolerance. J Ferment Bioeng 83:271–274

    Article  CAS  Google Scholar 

  • Nigam PS, Singh A (2011) Production of liquid biofuels from renewable resources. Prog Energy Combust Sci 37:52–68

    Article  CAS  Google Scholar 

  • Nitiyon S, Keo-oudone C, Murata M, Lertwattanasakul N, Limtong S, Kosaka T, Yamada M (2016) Efficient conversion of xylose to ethanol by stress tolerant Kluyeromyces marxianus BUNL-21. Springerplus 5:185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nuanpeng S, Thanonkeo S, Yamada M, Thanonkeo P (2016) Ethanol production from sweet sorghum juice at high temperatures using a newly isolated thermotolerant yeast Saccharomyces cerevisiae DBKKU Y-53. Energies 9:253

    Article  CAS  Google Scholar 

  • Phong HX, Giang NTC, Nitiyon S, Yamada M, Thanonkeo P, Dung NTP (2016) Ethanol production from molasses at high temperature by thermotolerant yeasts isolated from cocoa. Can Tho Univ J Sci 3:32–37

    Article  Google Scholar 

  • Phutela UG, Kaur J (2014) Process optimization for ethanol production from sweet sorghum juice using Saccharomyces cerevisiae strain NRRLY-2034 by response surface methodology. Sugar Tech 16:411–421

    Article  CAS  Google Scholar 

  • Shahsavarani H, Sugiyama M, Kaneko Y, Chuenchit B, Harashima S (2012) Superior thermotolerance of Saccharomyces cerevisiae for efficient bioethanol fermentation can be achieved by overexpression of RSP5 ubiquitin ligase. Biotechnol Adv 30:1289–1300

    Article  CAS  PubMed  Google Scholar 

  • Spencer J, Phister TG, Smart KA, Greetham D (2014) Tolerance of pentose utilising yeast to hydrogen peroxide-induced oxidative stress. BMC Res Notes 7:151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sree NK, Sridhar M, Suresh K, Banat IM, Venkateswar Rao L (2000) Isolation of thermotolerant, osmotolerant, flocculating Saccharomyces cerevisiae for ethanol production. Bioresour Technol 72:43–46

    Article  CAS  Google Scholar 

  • Sridhar M, Sree NK, Rao LV (2002) Effect of UV radiation on thermotolerant, ethanol tolerance and osmotolerant of Saccharomyces cerevisiae VS1 and VS3 strains. Bioresour Technol 83:199–202

    Article  CAS  PubMed  Google Scholar 

  • Srimachai T, Nuithitikul K, O-thong S, Kongjan P, Panpong K (2015) Optimization and kinetic modeling of ethanol production from oil palm frond juice in batch fermentation. Energy Procedia 79:111–118

    Article  CAS  Google Scholar 

  • Suutari M, Liukkonen K, Laakso S (1990) Temperature adaptation in yeasts: the role of fatty acids. J Gen Microbiol 136:1469–1474

    Article  CAS  PubMed  Google Scholar 

  • Taherzadeh MJ, Karimi K (2011) Fermentation inhibitors in ethanol processes and different strategies to reduce their effects. In: Pandey A, Larroche C, Ricke SC, Dussap CG, Gnansounou E (eds) Receptor localization. Elsevier, Burlington, pp 287–311

    Google Scholar 

  • Techaparin A, Thanonkeo P, Klanrit P (2017) High-temperature ethanol production using thermotolerant yeast newly isolated from Greater Mekong Subregion. Braz J Microbiol 48:461–475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian S, Zhu J, Yang X (2011) Evaluation of an adapted inhibitor-tolerant yeast strain for ethanol production from combined hydrolysate of softwood. Appl Energy 88:1792–1796

    Article  CAS  Google Scholar 

  • Verghese J, Abrams J, Wang Y, Morano KA (2012) Biology of the heat shock response and protein chaperones: budding yeast (Saccharomyces cerevisiae) as a model system. Microbiol Mol Biol Rev 76:115–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe T, Srichuwong S, Arakane M, Tamiya S, Yoshinaga M, Watanabe I, Yamamoto M, Ando A, Tokuyasu K, Nakamura T (2010) Selection of stress-tolerant yeasts for simultaneous saccharification and fermentation (SSF) of very high gravity (VHG) potato mash to ethanol. Bioresour Technol 101:9710–9714

    Article  CAS  PubMed  Google Scholar 

  • Watanabe T, Watanabe I, Yamamoto M, Ando A, Nakamura T (2011) A UV-induced mutant of Pichia stipitis with increased ethanol production from xylose and selection of a spontaneous mutant with increased ethanol tolerance. Bioresour Technol 102:1844–1848

    Article  CAS  PubMed  Google Scholar 

  • Yuangsaard N, Yongmanitchai W, Yamada M, Limtong S (2013) Selection and characterization of a newly isolated thermotolerant Pichia kudriavzevii strain for ethanol production at high temperature from cassava starch hydrolysate. Anton Leeuw 103:577–588

    Article  CAS  Google Scholar 

  • Zabed H, Sahu JN, Suely A, Boyce AN, Faruq G (2017) Bioethanol production from renewable sources: current perspectives and technological progress. Renew Sust Energy Rev 71:475–501

    Article  CAS  Google Scholar 

  • Zhang M, Zhu R, Zhang M, Wang S (2014) Creation of an ethanol-tolerant Saccharomyces cerevisiae strain by 266 nm laser radiation and repetitive cultivation. J Biosci Bioeng 118:508–513

    Article  CAS  PubMed  Google Scholar 

  • Zhang M, Shi J, Jiang L (2015) Modulation of mitochondrial membrane integrity and ROS formation by high temperature in Saccharomyces cerevisiae. Electron J Biotechnol 18:202–209

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the research grant from the Faculty of Science, Kasetsart University, Bangkok, Thailand and the Thailand Research Fund through the TRF Research-Team Promotion Grant RTA6080004.

Author information

Authors and Affiliations

Authors

Contributions

SP: Performed research and wrote the paper, NL: Data discussion and checking the paper, MY: Data discussion and checking the paper, SL: Designed study, data discussion and wrote the paper.

Corresponding author

Correspondence to Savitree Limtong.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pattanakittivorakul, S., Lertwattanasakul, N., Yamada, M. et al. Selection of thermotolerant Saccharomyces cerevisiae for high temperature ethanol production from molasses and increasing ethanol production by strain improvement. Antonie van Leeuwenhoek 112, 975–990 (2019). https://doi.org/10.1007/s10482-019-01230-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-019-01230-6

Keywords

Navigation