Skip to main content
Log in

The inverse scattering problem by an elastic inclusion

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

In this work we consider the inverse elastic scattering problem by an inclusion in two dimensions. The elastic inclusion is placed in an isotropic homogeneous elastic medium. The inverse problem, using the third Betti’s formula (direct method), is equivalent to a system of four integral equations that are non linear with respect to the unknown boundary. Two equations are on the boundary and two on the unit circle where the far-field patterns of the scattered waves lie. We solve iteratively the system of integral equations by linearising only the far-field equations. Numerical results are presented that illustrate the feasibility of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alessandrini, G., Morassi, A., Rosset, E.: Detecting an inclusion in an elastic body by boundary measurements. SIAM Rev. 46(3), 477–498 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Altundag, A., Kress, R.: On a two-dimensional inverse scattering problem for a dielectric. Appl. Anal. 91(4), 757–771 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alves, C.J.S., Martins, N.F.M.: The direct method of fundamental solutions and the inverse kirsch-kress method for the reconstruction of elastic inclusions or cavities. J. Integral Equations Appl. 21, 153–178 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chapko, R.: On the numerical solution of a boundary value problem in the plane elasticity for a bouble-connected domain. Math. Comput. Simulat. 66, 425–438 (2004)

    Article  MATH  Google Scholar 

  5. Chapko, R., Ivanyshyn, O., Protsyuk, O.: On a nonlinear integral equation approach for the surface reconstruction in semi-infinite-layered domains. Inverse Prob. Sci. Eng. 21(3), 547–561 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chapko, R., Kress, R., Mönch, L.: On the numerical solution of a hypersingular integral equation for elastic scattering from a planar crack. IMA J. Numer. Anal. 20, 601–619 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Charalambopoulos, A.: On the fréchet differentiability of boundary integral operators in the inverse elastic scattering problem. Inv. Probl. 11, 1137–1161 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  8. Charalambopoulos, A., Kirsch, A., Anagnostopoulos, K., Gintides, D., Kiriaki, K.: The factorization method in inverse elastic scattering from penetrable bodies. Inv. Probl. 23(1), 27–51 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gintides, D., Midrinos, L.: Inverse scattering problem for a rigid scatterer or a cavity in elastodynamics. ZAMM Z. Angew. Math. Mech. 91(4), 276–287 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gintides, D., Sini, M.: Identification of obstacles using only the scattered p-waves or the scattered s-wave. Inverse Probl. Imag. 6, 39–55 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hähner, P., Hsiao, G.: Uniqueness theorems in inverse obstacle scattering of elastic waves. Inv. Probl. 9, 525–534 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hu, G., Kirsch, A., Sini, M.: Some inverse problems arising from elastic scattering by rigid obstacles. Inv. Probl. 29(1), 015009 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ivanyshyn, O., Johansson, B. T.: Nonlinear integral equation methods for the reconstruction of an acoustically sound-soft obstacle. J. Integral Equations Appl. 19(3), 289–308 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ivanyshyn, O., Johansson, B.T.: Boundary integral equations for acoustical inverse sound-soft scattering. J. Inv. Ill-posed Probl. 16(1), 65–78 (2008)

    MathSciNet  MATH  Google Scholar 

  15. Ivanyshyn, O., Kress, R.: Nonlinear integral equations for solving inverse boundary value problems for inclusions and cracks. J. Integral Equations Appl. 18 (1), 13–38 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Johansson, B.T., Sleeman, B.: Reconstruction of an acoustically sound-soft obstacle from one incident field and the far-field pattern. IMA J. Appl. Math. 72, 96–112 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kar, M., Sini, M.: On the inverse elastic scattering by interfaces using one type of scattered waves. J. Elast. 118(1), 15–38 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Knops, R.J., Payne, L.E.: Uniqueness theorems in linear elasticity. Springer, Berlin (1971)

    Book  MATH  Google Scholar 

  19. Kress, R.: On the numerical solution of a hypersingular integral equation in scattering theory. J. Comput. Appl. Math. 61(3), 345–360 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kress, R.: Inverse elastic scattering from a crack. Inv. Probl. 12, 667–684 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kress, R.: Linear Integral Equations. 3rd edn. Springer, New York (2014)

    Book  MATH  Google Scholar 

  22. Kress, R., Rundell, W.: Nonlinear integral equations and the iterative solution for an inverse boundary value problem. Inv. Probl. 21, 1207–1223 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kupradze, V.: Three-dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity. North-Holland Publishing Co., New York (1979)

    Google Scholar 

  24. Le Louër, F.: A domain derivative-based method for solving elastodynamic inverse obstacle scattering problems. Inv. Probl. 31(11), 115006 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lee, K.: Inverse scattering problem from an impedance crack via a composite method. Wave Motion 56, 43–51 (2015)

    Article  MathSciNet  Google Scholar 

  26. Li, J., Sun, G.: A nonlinear integral equation method for the inverse scattering problem by sound-soft rough surfaces. Inverse Probl. Sci. Eng. 23(4), 557–577 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Martin, P.: On the scattering of elastic waves by an elastic inclusion in two dimensions. Quart. J. Mech. and Appl. Math. 43(3), 275–291 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  28. Pelekanos, G., Kleinman, R., van den Berg, P.: Inverse scattering in elasticity – a modified gradient approach. Wave Motion 32(1), 57–65 (2000)

    Article  MATH  Google Scholar 

  29. Pelekanos, G., Sevroglou, V.: Inverse scattering by penetrable objects in two-dimensional elastodynamics. J. Comput. Appl. Math. 151(1), 129–140 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  30. Qin, H.H., Cakoni, F.: Nonlinear integral equations for shape reconstruction in the inverse interior scattering problem. Inv. Probl. 27, 035005 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  31. Sevroglou, V.: The far-field operator for penetrable and absorbing obstacles in 2d inverse elastic scattering. Inv. Probl. 21(2), 717–738 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonidas Mindrinos.

Additional information

Communicated by: Karsten Urban

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chapko, R., Gintides, D. & Mindrinos, L. The inverse scattering problem by an elastic inclusion. Adv Comput Math 44, 453–476 (2018). https://doi.org/10.1007/s10444-017-9550-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-017-9550-z

Keywords

Mathematics Subject Classification (2010)

Navigation