Skip to main content
Log in

Refinable functions for dilation families

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

We consider a family of d × d matrices W e indexed by e ∈ E where (E, μ) is a probability space and some natural conditions for the family (W e ) e ∈ E are satisfied. The aim of this paper is to develop a theory of continuous, compactly supported functions \(\varphi: {{\mathbb R}}^d \to {\mathbb{C}}\) which satisfy a refinement equation of the form

$$ \varphi (x) = \int_E \sum\limits_{\alpha \in {{\mathbb Z}}^d} a_e(\alpha)\varphi\left(W_e x - \alpha\right) d\mu(e) $$

for a family of filters \(a_e : {{\mathbb Z}}^d \to {\mathbb{C}}\) also indexed by e ∈ E. One of the main results is an explicit construction of such functions for any reasonable family (W e ) e ∈ E . We apply these facts to construct scaling functions for a number of affine systems with composite dilation, most notably for shearlet systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blanchard, J.: Minimally supported frequency composite dilation parseval frame wavelets. J. Geom. Anal. 19, 19–35 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Candes, E.J., Donoho, D.L.: Continuous curvelet transform: I. resolution of the wavefront set. Appl. Comput. Harmon. Anal. 19, 162–197 (2003)

    Article  MathSciNet  Google Scholar 

  3. Candes, E.J., Donoho, D.L.: Continuous curvelet transform: II. discretization and frames. Appl. Comput. Harmon. Anal. 19, 198–222 (2003)

    Article  MathSciNet  Google Scholar 

  4. Cavaretta, A.S., Dahmen, W., Micchelli, C. A.: Stationary Subdivision. American Mathematical Society (1991)

  5. Daubechies, I.: Ten lectures on Wavelets. SIAM (1992)

  6. Deslauriers, G., Dubuc, S.: Symmetric iterative interpolation processes. Constr. Approx. 5, 49–68 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  7. Do, M.N., Vetterli, M.: The contourlet transform: An efficient directional multiresolution image representation. IEEE Trans. Image Process. 14, 2091–2106 (2005)

    Article  MathSciNet  Google Scholar 

  8. Grohs, P.: Interpolating composite systems. In: Proceedings of the 13th Intl. Conference on Approximation Theory. Technical Report. San Antonio (2010, to appear)

  9. Guo, K. Labate, D.: Optimally sparse multidimensional representation using shearlets. SIAM J. Math. Analy. 39, 298–318 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Guo, K., Lim, W.-Q., Labate, D., Weiss, G., Wilson, E.: Wavelets with composite dilations. Electron. Res. Announc. Am. Math. Soc. 10, 78–87 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Guo, K., Lim, W.-Q., Labate, D., Weiss, G., Wilson, E.: Wavelets with composite dilation and their mra properties. Appl. Comput. Harmon. Anal. 20, 202–236 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Han, B.: Symmetry property and construction of wavelets with a general dilation matrix. Linear Algebra Appl. 353, 207–225 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Han, B.: Compactly supported tight wavelet frames and orthonormal wavelets of exponential decay with a general dilation matrix. J. Comput. Appl. Math. 155, 43–67 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Han, B., Kutyniok, G., Shen, Z.: A unitary extension principle for shearlet systems. Technical Report. Universität Osnabrück (2009).

  15. Hörmander, L.: The Analysis of linear Partial Differential Operators. Springer (1983)

  16. Krishtal, I.A., Robinson, B.D., Weiss, G., Wilson, E.: Some simple haar-type wavelets in higher dimensions. J. Geom. Anal. 17, 87–96 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kutyniok, G., Labate, D.: Resolution of the wavefront set using continuous shearlets. Trans. Am. Math. Soc. 361, 2719–2754 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kutyniok, G., Sauer, T.: Adaptive directional subdivision schemes and shearlet multiresolution analysis. SIAM J. Math. Analy. 41, 1436–1471 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Labate, D., Kutyniok, G., Lim, W.-Q., Weiss, G.: Sparse multidimensional representation using shearlets. In: SPIE Proc. 5914, Wavelets XI (San Diego, CA, 2005), pp. 254–262. SPIE, Bellingham, WA (2005)

  20. Micchelli, C.A.: Interpolatory subdivision schemes and wavelets. J. Approx. Theory 86, 41–71 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ron, A. Shen, Z.: Frames and stable bases for shift-invariant subspaces of \(l_2(\mathbb{R}^d)\). Can. J. Math. 47, 1051–1094 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ron, A., Shen, Z.: Affine systems in L 2(ℝd): the analysis of the analysis operator. J. Funct. Anal. 148(2), 408–447 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  23. Stein, E.M.: Harmonic Analysis. Princeton University Press (1993)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Grohs.

Additional information

Communicated by Tomas Sauer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grohs, P. Refinable functions for dilation families. Adv Comput Math 38, 531–561 (2013). https://doi.org/10.1007/s10444-011-9248-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-011-9248-6

Keywords

Mathematics Subject Classifications (2010)

Navigation