Skip to main content
Log in

Reproducibility and Repeatability of Five Different Technologies for Bar Velocity Measurement in Resistance Training

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

A Commentary to this article was published on 24 June 2019

A Commentary to this article was published on 11 June 2019

Abstract

This study aimed to analyze the agreement between five bar velocity monitoring devices, currently used in resistance training, to determine the most reliable device based on reproducibility (between-device agreement for a given trial) and repeatability (between-trial variation for each device). Seventeen resistance-trained men performed duplicate trials against seven increasing loads (20-30-40-50-60-70-80 kg) while obtaining mean, mean propulsive and peak velocity outcomes in the bench press, full squat and prone bench pull exercises. Measurements were simultaneously registered by two linear velocity transducers (LVT), two linear position transducers (LPT), two optoelectronic camera-based systems (OEC), two smartphone video-based systems (VBS) and one accelerometer (ACC). A comprehensive set of statistics for assessing reliability was used. Magnitude of errors was reported both in absolute (m s−1) and relative terms (%1RM), and included the smallest detectable change (SDC) and maximum errors (MaxError). LVT was the most reliable and sensitive device (SDC 0.02–0.06 m s−1, MaxError 3.4–7.1% 1RM) and the preferred reference to compare with other technologies. OEC and LPT were the second-best alternatives (SDC 0.06–0.11 m s−1), always considering the particular margins of error for each exercise and velocity outcome. ACC and VBS are not recommended given their substantial errors and uncertainty of the measurements (SDC > 0.13 m s−1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Atkinson, G., and A. Nevill. Statistical methods for assssing measurement error (reliability) in variables relevant to sports medicine. Sport Med. 26:217–238, 1998.

    Article  CAS  Google Scholar 

  2. Balsalobre-Fernández, C., M. Kuzdub, P. Poveda-Ortiz, and J. Del Campo-Vecino. Validity and reliability of the PUSH wearable device to measure movement velocity during the back squat exercise. J. Strength Cond. Res. 30:1968–1974, 2016.

    Article  PubMed  Google Scholar 

  3. Balsalobre-Fernández, C., D. Marchante, E. Baz-Valle, I. Alonso-Molero, S. L. Jiménez, and M. Muñóz-López. Analysis of wearable and smartphone-based technologies for the measurement of barbell velocity in different resistance training exercises. Front. Physiol. 8:649, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Balsalobre-Fernández, C., D. Marchante, M. Muñoz-López, and S. L. Jiménez. Validity and reliability of a novel iPhone app for the measurement of barbell velocity and 1RM on the bench-press exercise. J. Sports Sci. 36:64–70, 2018.

    Article  PubMed  Google Scholar 

  5. Banyard, H. G., K. Nosaka, K. Sato, and G. G. Haff. Validity of various methods for determining velocity, force, and power in the back squat. Int. J. Sports Physiol. Perform. 12:1170–1176, 2017.

    Article  PubMed  Google Scholar 

  6. Bartlett, J. W., and C. Frost. Reliability, repeatability and reproducibility: analysis of measurement errors in continuous variables. Ultrasound Obstet. Gynecol. 31:466–475, 2008.

    Article  CAS  PubMed  Google Scholar 

  7. Beckerman, H., M. E. Roebroeck, G. J. Lankhorst, J. G. Becher, P. D. Bezemer, and A. L. Verbeek. Smallest real difference, a link between reproducibility and responsiveness. Qual. Life Res. 10:571–578, 2001.

    Article  CAS  PubMed  Google Scholar 

  8. Black, M. Reliability and validity of the GymAware optical encoder to measure displacement data. 2010. https://kinetic.com.au/pdf/GA-Report2.pdf

  9. Bland, J. M., and D. G. Altman. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1:307–310, 1986.

    Article  CAS  Google Scholar 

  10. Ceseracciu, E., Z. Sawacha, and C. Cobelli. Comparison of markerless and marker-based motion capture technologies through simultaneous data collection during gait: proof of concept. PLoS ONE 9:e87640, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. García-Ramos, A., A. Pérez-Castilla, and F. Martín. Reliability and concurrent validity of the Velowin optoelectronic system to measure movement velocity during the free-weight back squat. Int. J. Sport. Sci. Coach. 13:737–742, 2018.

    Article  Google Scholar 

  12. Garnacho-Castaño, M. V., S. López-Lastra, and J. L. Maté-Muñoz. Reliability and validity assessment of a linear position transducer. J. Sports Sci. Med. 14:128–136, 2015.

    PubMed  PubMed Central  Google Scholar 

  13. Giavarina, D. Understanding Bland Altman analysis. Biochem. Med. 25:141–151, 2015.

    Article  Google Scholar 

  14. González-Badillo, J. J., D. Rodríguez-Rosell, L. Sánchez-Medina, E. M. Gorostiaga, and F. Pareja-Blanco. Maximal intended velocity training induces greater gains in bench press performance than deliberately slower half-velocity training. Eur. J. Sport Sci. 14:772–781, 2014.

    Article  PubMed  Google Scholar 

  15. González-Badillo, J. J., and L. Sánchez-Medina. Movement velocity as a measure of loading intensity in resistance training. Int. J. Sports Med. 31:347–352, 2010.

    Article  PubMed  Google Scholar 

  16. Hopkins, W. G. Measures of reliability in sports medicine and science. Sport Med. 30:1–15, 2000.

    Article  CAS  Google Scholar 

  17. Izquierdo, M., J. Ibáñez, J. J. Gonzalez-Badillo, and E. M. Gorostiaga. Effects of creatine supplementation on muscle power, endurance, and sprint performance. Med. Sci. Sport. Exerc. 34:332–343, 2002.

    Article  CAS  Google Scholar 

  18. Koo, T. K., and M. Y. Li. A guideline of selecting and reporting intraclasscorrelation coefficients for reliability research. J. Chiropr. Med. 15:155–163, 2016.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Laza-Cagigas, R., M. Goss-Sampson, E. Larumbe-Zabala, L. Termkolli, and F. Naclerio. Validity and reliability of a novel optoelectronic device to measure movement velocity, force and power during the back squat exercise. J. Sports Sci. 25:1–8, 2018. https://doi.org/10.1080/02640414.2018.1527673.

    Article  Google Scholar 

  20. Lin, L., A. S. Hedayat, B. Sinha, and M. Yang. Statistical methods in assessing agreement. J. Am. Stat. Assoc. 97:257–270, 2002.

    Article  Google Scholar 

  21. Lorenzetti, S., T. Lamparter, and F. Lüthy. Validity and reliability of simple measurement device to assess the velocity of the barbell during squats. BMC Res. Notes 10:707, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Martínez-Cava, A., R. Morán-Navarro, L. Sánchez-Medina, J. J. González-Badillo, and J. G. Pallarés. Velocity- and power-load relationships in the half, parallel and full back squat. J. Sports Sci. 25:1–9, 2018. https://doi.org/10.1080/02640414.2018.1544187.

    Article  Google Scholar 

  23. Martins, W. P., and C. O. Nastri. Interpreting reproducibility results for ultrasound measurements. Ultrasound Obstet. Gynecol. 43:479–480, 2014.

    Article  CAS  PubMed  Google Scholar 

  24. Mehrizi, R., X. Xu, S. Zhang, V. Pavlovic, D. Metaxas, and K. Li. Using a marker-less method for estimating L5/S1 moments during symmetrical lifting. Appl. Ergon. 65:541–550, 2017.

    Article  PubMed  Google Scholar 

  25. Morán-Navarro, R., A. Martínez-Cava, L. Sánchez-Medina, R. Mora-Rodríguez, J. J. González-Badillo, and J. G. Pallarés. Movement velocity as a measure of level of effort during resistance exercise. J. Strength Cond. Res. 2017. https://doi.org/10.1519/JSC.0000000000002017.

    Article  Google Scholar 

  26. Morán-Navarro, R., C. E. Pérez, R. Mora-Rodríguez, E. de la Cruz-Sánchez, J. J. González-Badillo, L. Sánchez-Medina, and J. G. Pallarés. Time course of recovery following resistance training leading or not to failure. Eur. J. Appl. Physiol. 117:2387–2399, 2017.

    Article  CAS  PubMed  Google Scholar 

  27. Pallarés, J. G., Á. López-Samanes, V. E. Fernández-Elías, R. Aguado-Jiménez, J. F. Ortega, C. Gómez, R. Ventura, J. Segura, and R. Mora-Rodríguez. Pseudoephedrine and circadian rhythm interaction on neuromuscular performance. Scand. J. Med. Sci. Sports 25:e603–e612, 2015.

    Article  PubMed  Google Scholar 

  28. Pareja-Blanco, F., D. Rodríguez-Rosell, L. Sánchez-Medina, J. Sanchis-Moysi, C. Dorado, R. Mora-Custodio, J. M. Yáñez-García, D. Morales-Alamo, I. Pérez-Suárez, J. A. Calbet, and J. J. González-Badillo. Effects of velocity loss during resistance training on athletic performance, strength gains and muscle adaptations. Scand. J. Med. Sci. Sports 27:724–735, 2017.

    Article  CAS  PubMed  Google Scholar 

  29. Revicki, D., R. D. Hays, D. Cella, and J. Sloan. Recommended methods for determining responsiveness and minimally important differences for patient-reported outcomes. J. Clin. Epidemiol. 61:102–109, 2008.

    Article  PubMed  Google Scholar 

  30. Sánchez-Medina, L., and J. J. González-Badillo. Velocity loss as an indicator of neuromuscular fatigue during resistance training. Med. Sci. Sport. Exerc. 43:1725–1734, 2011.

    Article  Google Scholar 

  31. Sánchez-Medina, L., J. J. González-Badillo, C. E. Pérez, and J. G. Pallarés. Velocity- and power-load relationships of the bench pull vs bench press exercises. Int. J. Sports Med. 35:209–216, 2014.

    PubMed  Google Scholar 

  32. Sánchez-Medina, L., R. Morán-Navarro, C. Pérez, J. González-Badillo, and J. Pallarés. Estimation of relative load from bar velocity in the full back squat exercise. Sport. Med. Int. Open 01:E80–E88, 2017.

    Article  Google Scholar 

  33. Sánchez-Medina, L., C. E. Perez, and J. J. González-Badillo. Importance of the propulsive phase in strength assessment. Int. J. Sports Med. 31:123–129, 2010.

    Article  PubMed  Google Scholar 

  34. Sánchez-Pay, A., J. Courel-Ibáñez, A. Martínez-Cava, E. Conesa-Ros, R. Morán-Navarro, and J. G. Pallarés. Is the high-speed camera-based method a plausible option for bar velocity assessment during resistance training? Measurement 137:355–361, 2019.

    Article  Google Scholar 

  35. Sato, K., G. K. Beckham, K. Carroll, C. Bazyler, and Z. Sha. Validity of wireless device measuring velocity of resistance exercises. J. Trainol. 4:15–18, 2015.

    Article  Google Scholar 

  36. Watson, P. F., and A. Petrie. Method agreement analysis: a review of correct methodology. Theriogenology 73:1167–1179, 2010.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesús G. Pallarés.

Additional information

Associate Editor Stefan M. Duma oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Courel-Ibáñez, J., Martínez-Cava, A., Morán-Navarro, R. et al. Reproducibility and Repeatability of Five Different Technologies for Bar Velocity Measurement in Resistance Training. Ann Biomed Eng 47, 1523–1538 (2019). https://doi.org/10.1007/s10439-019-02265-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-019-02265-6

Keywords

Navigation