Skip to main content

Advertisement

Log in

Permeability Analysis of Neuroactive Drugs Through a Dynamic Microfluidic In Vitro Blood–Brain Barrier Model

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

This paper presents the permeability analysis of neuroactive drugs and correlation with in vivo brain/plasma ratios in a dynamic microfluidic blood–brain barrier (BBB) model. Permeability of seven neuroactive drugs (Ethosuximide, Gabapentin, Sertraline, Sunitinib, Traxoprodil, Varenicline, PF-304014) and trans-endothelial electrical resistance (TEER) were quantified in both dynamic (microfluidic) and static (transwell) BBB models, either with brain endothelial cells (bEnd.3) in monoculture, or in co-culture with glial cells (C6). Dynamic cultures were exposed to 15 dyn/cm2 shear stress to mimic the in vivo environment. Dynamic models resulted in significantly higher average TEER (respective 5.9-fold and 8.9-fold increase for co-culture and monoculture models) and lower drug permeabilities (average respective decrease of 0.050 and 0.052 log(cm/s) for co-culture and monoculture) than static models; and co-culture models demonstrated higher average TEER (respective 90 and 25% increase for static and dynamic models) and lower drug permeability (average respective decrease of 0.063 and 0.061 log(cm/s) for static and dynamic models) than monoculture models. Correlation of the resultant logP e values [ranging from −4.06 to −3.63 log(cm/s)] with in vivo brain/plasma ratios (ranging from 0.42 to 26.8) showed highly linear correlation (R 2 > 0.85) for all model conditions, indicating the feasibility of the dynamic microfluidic BBB model for prediction of BBB clearance of pharmaceuticals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Abbreviations

μBBB:

Microfluidic blood–brain barrier

CAN:

Acetonitrile

APTES:

3-aminopropyltriethoxysilane

AUC:

Area under the curve

B/P:

Brain/plasma ratio

BBB:

Blood–brain barrier

CNS:

Central nervous system

DAPI:

4′,6-Diamidino-2-phenylindole

DMSO:

Dimethylsiloxane

HPLC:

High performance liquid chromatography

LC–MS:

Liquid chromatography-mass spectrometry

LDH:

Lactate dehydrogenase

OPA:

ο-Phthalaldehyde

PBS:

Phosphate buffered saline

PC:

Polycarbonate

PDMS:

Polydimethylsiloxane

PK:

Pharmacokinetic

TEER:

Trans-endothelial electrical resistance

ZO-1:

Zonal occludin-1

References

  1. Abbott, N. J. Prediction of blood–brain barrier permeation in drug discovery from in vivo, in vitro and in silico models. Drug Discov. Today Technol. 1:407–416, 2004.

    Article  CAS  PubMed  Google Scholar 

  2. Achyuta, A. K. H., A. J. Conway, R. B. Crouse, E. C. Bannister, R. N. Lee, C. P. Katnik, A. A. Behensky, J. Cuevas, and S. S. Sundaram. A modular approach to create a neurovascular unit-on-a-chip. Lab Chip. 13:542–553, 2013.

    Article  CAS  PubMed  Google Scholar 

  3. Adams, C. P., and V. V. Brantner. Estimating the cost of new drug development: is it really 802 million dollars? Health Aff. (Millwood). 25:420–428, 2006.

    Article  PubMed  Google Scholar 

  4. Aran, K., L. A. Sasso, N. Kamdar, and J. D. Zahn. Irreversible, direct bonding of nanoporous polymer membranes to PDMS or glass microdevices. Lab Chip. 10:548–552, 2010.

    Article  CAS  PubMed  Google Scholar 

  5. Booth, R., and H. Kim. Characterization of a microfluidic in vitro model of the blood–brain barrier (μbbb). Lab Chip. 12:1784–1792, 2012.

    Article  CAS  PubMed  Google Scholar 

  6. Booth, R., S. Noh, and H. Kim. A multiple-channel, multiple-assay platform for characterization of full-range shear stress effects on vascular endothelial cells. Lab Chip. 14(11):1880–1890, 2014.

    Article  CAS  PubMed  Google Scholar 

  7. Bynum, J. Unpublished Tabulations Based on Data from the Medicare Current Beneficiary Survey for 2008. Nov 2011, Dartmouth Medical School

  8. Cecchelli, R., V. Berezowski, S. Lundquist, M. Culot, M. Renftel, M. P. Dehouck, and L. Fenart. Modelling of the blood–brain barrier in drug discovery and development. Nat. Rev. Drug Discov. 6:650–661, 2007.

    Article  CAS  PubMed  Google Scholar 

  9. Chien, S. Molecular basis of rheological modulation of endothelial functions: importance of stress direction. Biorheology 43:95–116, 2006.

    CAS  PubMed  Google Scholar 

  10. Chien, S., S. Li, and Y. J. Shyy. Effects of mechanical forces on signal transduction and gene expression in endothelial cells. Hypertension 31:162–169, 1998.

    Article  CAS  PubMed  Google Scholar 

  11. Chueh, B. H., D. Huh, C. R. Kyrtsos, T. Houssin, N. Futai, and S. Takayama. Leakage-free bonding of porous membranes into layered microfluidic array systems. Anal. Chem. 79:3504–3508, 2007.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Couchman, L., M. Birch, R. Ireland, A. Corrigan, S. Wickramasinghe, D. Josephs, J. Spicer, and R. Flanagan. An automated method for the measurement of a range of tyrosine kinase inhibitors in human plasma or serum using turbulent flow liquid chromatography–tandem mass spectrometry. Anal. Bioanal. Chem. 403:1685–1695, 2012.

    Article  CAS  PubMed  Google Scholar 

  13. Crivori, P., G. Cruciani, P.-A. Carrupt, and B. Testa. Predicting blood–brain barrier permeation from three-dimensional molecular structure. J. Med. Chem. 43:2204–2216, 2000.

    Article  CAS  PubMed  Google Scholar 

  14. Cucullo, L., M. S. McAllister, K. Kight, L. Krizanac-Bengez, M. Marroni, M. R. Mayberg, K. A. Stanness, and D. Janigro. A new dynamic in vitro model for the multidimensional study of astrocyte–endothelial cell interactions at the blood–brain barrier. Brain Res. 951:243–254, 2002.

    Article  CAS  PubMed  Google Scholar 

  15. Cucullo, L., M. Hossain, V. Puvenna, N. Marchi, and D. Janigro. The role of shear stress in blood–brain barrier endothelial physiology. BMC Neurosci. 12:40, 2011.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. De Boer, A., I. Van Der Sandt, and P. Gaillard. The role of drug transporters at the blood–brain barrier. Ann. Rev. Pharmacol. Toxicol. 43:629–656, 2003.

    Article  Google Scholar 

  17. Deak, K., K. Takacs-Novak, K. Tihanyi, and B. Noszal. Physico-chemical profiling of antidepressive sertraline: solubility, ionisation, lipophilicity. Med. Chem. 2:385–389, 2006.

    Article  CAS  PubMed  Google Scholar 

  18. Desai, S. Y., M. Marroni, L. Cucullo, L. Krizanac-Bengez, M. R. Mayberg, M. T. Hossain, G. G. Grant, and D. Janigro. Mechanisms of endothelial survival under shear stress. Endothelium 9:89–102, 2002.

    Article  CAS  PubMed  Google Scholar 

  19. Ferri, C. P., M. Prince, C. Brayne, H. Brodaty, L. Fratiglioni, M. Ganguli, K. Hall, K. Hasegawa, H. Hendrie, and Y. Huang. Global prevalence of dementia: a delphi consensus study. Lancet 366:2112–2117, 2006.

    Article  Google Scholar 

  20. Galan-Valiente, J., R. Soto-Otero, and G. Sierra-Marcuño. Simultaneous measurement of ethosuximide and phenobarbital in brain tissue, serum and urine by HPLC. Biomed. Chromatogr. 3:49–52, 1989.

    Article  CAS  PubMed  Google Scholar 

  21. Gloor, S. M., M. Wachtel, M. F. Bolliger, H. Ishihara, R. Landmann, and K. Frei. Molecular and cellular permeability control at the blood–brain barrier. Brain Res. Rev. 36:258–264, 2001.

    Article  CAS  PubMed  Google Scholar 

  22. Griep, L., F. Wolbers, B. de Wagenaar, P. Ter Braak, B. Weksler, I. A. Romero, P. Couraud, I. Vermes, A. van der Meer, and A. van den Berg. BBB on chip: microfluidic platform to mechanically and biochemically modulate blood–brain barrier function. Biomed. Microdevices 15:145–150, 2013.

    Article  CAS  PubMed  Google Scholar 

  23. Hebert, L. E., L. A. Beckett, P. A. Scherr, and D. A. Evans. Annual incidence of alzheimer disease in the united states projected to the years 2000 through 2050. Alzheimer Dis. Assoc. Disord. 15:169–173, 2001.

    Article  CAS  PubMed  Google Scholar 

  24. Henderson, J., R. D. Ricker, B. A. Bidlingmeyer, and C. Woodward. Rapid, accurate, sensitive, and reproducible HPLC analysis of amino acids. Amino Acid Anal. Zorbax Eclipse AAA Columns Agilent. 1100:1–10, 2000.

    Google Scholar 

  25. Jain, D. S., M. Sanyal, G. Subbaiah, U. Pande, and P. Shrivastav. Rapid and sensitive method for the determination of sertraline in human plasma using liquid chromatography–tandem mass spectrometry (LC–MS/MS). J. Chromatogr. B 829:69–74, 2005.

    Article  CAS  Google Scholar 

  26. Johnson, K., A. Shah, S. Jaw-Tsai, J. Baxter, and C. Prakash. Metabolism, pharmacokinetics, and excretion of a highly selectiven-methyl-d-aspartate receptor antagonist, traxoprodil, in human cytochrome p450 2d6 extensive and poor metabolizers. Drug Metab. Dispos. 31:76–87, 2003.

    Article  CAS  PubMed  Google Scholar 

  27. Kola, I., and J. Landis. Can the pharmaceutical industry reduce attrition rates? Nat. Rev. Drug Discov. 3:711–716, 2004.

    Article  CAS  PubMed  Google Scholar 

  28. Kushnir, M. M., J. Crossett, P. I. Brown, and F. M. Urry. Analysis of gabapentin in serum and plasma by solid-phase extraction and gas chromatography-mass spectrometry for therapeutic drug monitoring. J. Anal. Toxicol. 23:1–6, 1999.

    Article  CAS  PubMed  Google Scholar 

  29. Li, G., M. J. Simon, L. M. Cancel, Z. D. Shi, X. Ji, J. M. Tarbell, B. Morrison, 3rd, and B. M. Fu. Permeability of endothelial and astrocyte cocultures: in vitro blood–brain barrier models for drug delivery studies. Ann. Biomed. Eng. 38:2499–2511, 2010.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Nakagawa, S., M. A. Deli, H. Kawaguchi, T. Shimizudani, T. Shimono, A. Kittel, K. Tanaka, and M. Niwa. A new blood–brain barrier model using primary rat brain endothelial cells, pericytes and astrocytes. Neurochem. Int. 54:253–263, 2009.

    Article  CAS  PubMed  Google Scholar 

  31. Neuhaus, W., R. Lauer, S. Oelzant, U. P. Fringeli, G. F. Ecker, and C. R. Noe. A novel flow based hollow-fiber blood–brain barrier in vitro model with immortalised cell line pbmec/c1-2. J. Biotechnol. 125:127–141, 2006.

    Article  CAS  PubMed  Google Scholar 

  32. Neuhaus, W., V. E. Plattner, M. Wirth, B. Germann, B. Lachmann, F. Gabor, and C. R. Noe. Validation of in vitro cell culture models of the blood–brain barrier: tightness characterization of two promising cell lines. J. Pharm. Sci. 97:5158–5175, 2008.

    Article  CAS  PubMed  Google Scholar 

  33. Obach, R. S., A. E. Reed-Hagen, S. S. Krueger, B. J. Obach, T. N. O’Connell, K. S. Zandi, S. Miller, and J. W. Coe. Metabolism and disposition of varenicline, a selective α4β2 acetylcholine receptor partial agonist, in vivo and in vitro. Drug Metab. Disposit. 34:121–130, 2006.

    Article  CAS  Google Scholar 

  34. Oberoi, R. K., R. K. Mittapalli, J. Fisher, and W. F. Elmquist. Sunitinib LC-MS/MS assay in mouse plasma and brain tissue: application in CNS distribution studies. Chromatographia 76:1657–1665, 2013.

    Article  CAS  Google Scholar 

  35. Omidi, Y., L. Campbell, J. Barar, D. Connell, S. Akhtar, and M. Gumbleton. Evaluation of the immortalised mouse brain capillary endothelial cell line, b.End3, as an in vitro blood–brain barrier model for drug uptake and transport studies. Brain Res. 990:95–112, 2003.

    Article  CAS  PubMed  Google Scholar 

  36. Pangalos, M. N., L. E. Schechter, and O. Hurko. Drug development for CNS disorders: strategies for balancing risk and reducing attrition. Nat. Rev. Drug Discov. 6:521–532, 2007.

    Article  CAS  PubMed  Google Scholar 

  37. Pardridge, W. M. The blood–brain barrier: bottleneck in brain drug development. NeuroRx. 2:3–14, 2005.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Pardridge, W. M., W. H. Oldendorf, P. Cancilla, and H. J. Frank. Blood–brain barrier: interface between internal medicine and the brain. Annal. Intern. Med. 105:82–95, 1986.

    Article  CAS  Google Scholar 

  39. Pardridge, W. M., D. Triguero, J. Yang, and P. A. Cancilla. Comparison of in vitro and in vivo models of drug transcytosis through the blood–brain barrier. J. Pharmacol. Exp. Ther. 253:884–891, 1990.

    CAS  PubMed  Google Scholar 

  40. Peeters, M., M. J. Gunthorpe, P. J. Strijbos, P. Goldsmith, N. Upton, and M. F. James. Effects of pan- and subtype-selective n-methyl-d-aspartate receptor antagonists on cortical spreading depression in the rat: therapeutic potential for migraine. J. Pharmacol. Exp. Ther. 321:564–572, 2007.

    Article  CAS  PubMed  Google Scholar 

  41. Polk, B. J., A. Stelzenmuller, G. Mijares, W. MacCrehan, and M. Gaitan. Ag/AgCl microelectrodes with improved stability for microfluidics. Sensors Actuators B 114:239–247, 2006.

    Article  CAS  Google Scholar 

  42. Prabhakarpandian, B., M.-C. Shen, J. B. Nichols, I. R. Mills, M. Sidoryk-Wegrzynowicz, M. Aschner, and K. Pant. SyM-BBB: a microfluidic blood brain barrier model. Lab Chip. 13:1093–1101, 2013.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Reichel, A. Addressing central nervous system (CNS) penetration in drug discovery: basics and implications of the evolving new concept. Chem. Biodivers. 6:2030–2049, 2009.

    Article  CAS  PubMed  Google Scholar 

  44. Rollema, H., A. Shrikhande, K. M. Ward, F. D. Tingley, 3rd, J. W. Coe, B. T. O’Neill, E. Tseng, E. Q. Wang, R. J. Mather, R. S. Hurst, K. E. Williams, M. de Vries, T. Cremers, S. Bertrand, and D. Bertrand. Pre-clinical properties of the alpha4beta2 nicotinic acetylcholine receptor partial agonists varenicline, cytisine and dianicline translate to clinical efficacy for nicotine dependence. Br. J. Pharmacol. 160:334–345, 2010.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Summerfield, S. G., A. J. Lucas, R. A. Porter, P. Jeffrey, R. N. Gunn, K. R. Read, A. J. Stevens, A. C. Metcalf, M. C. Osuna, P. J. Kilford, J. Passchier, and A. D. Ruffo. Toward an improved prediction of human in vivo brain penetration. Xenobiotica 38:1518–1535, 2008.

    Article  CAS  PubMed  Google Scholar 

  46. Tzima, E., M. Irani-Tehrani, W. B. Kiosses, E. Dejana, D. A. Schultz, B. Engelhardt, G. Cao, H. DeLisser, and M. A. Schwartz. A mechanosensory complex that mediates the endothelial cell response to fluid shear stress. Nature 437:426–431, 2005.

    Article  CAS  PubMed  Google Scholar 

  47. Vastag, M., and G. M. Keseru. Current in vitro and in silico models of blood–brain barrier penetration: a practical view. Curr. Opin. Drug Discov. Dev. 12:115–124, 2009.

    CAS  Google Scholar 

  48. Wang, Y., and D. F. Welty. The simultaneous estimation of the influx and efflux blood–brain barrier permeabilities of gabapentin using a microdialysis-pharmacokinetic approach. Pharm. Res. 13:398–403, 1996.

    Article  CAS  PubMed  Google Scholar 

  49. Wolburg, H., S. Noell, A. Mack, K. Wolburg-Buchholz, and P. Fallier-Becker. Brain endothelial cells and the glio-vascular complex. Cell Tissue Res. 335:75–96, 2009.

    Article  PubMed  Google Scholar 

  50. Wood, K. M., T. A. Lanz, K. J. Coffman, S. L. Becker, J. van Deusen, C. E. Nolan, K. E. Richter, J. E. Finley, T. M. Brown, and M. A. Brodney. P2-375: efficacy of the novel γ-secretase inhibitor, Pf-3084014, in reducing aβ in brain, CSF, and plasma in guinea pigs and tg2576 mice. Alzheimer’s Dement. 4:T482–T483, 2008.

    Article  Google Scholar 

  51. Yuan, W., G. Li, E. S. Gil, T. L. Lowe, and B. M. Fu. Effect of surface charge of immortalized mouse cerebral endothelial cell monolayer on transport of charged solutes. Ann. Biomed. Eng. 38:1463–1472, 2010.

    Article  PubMed  Google Scholar 

  52. Zehendner, C. M., H. J. Luhmann, and C. R. Kuhlmann. Studying the neurovascular unit: an improved blood–brain barrier model. J. Cereb. Blood Flow Metab. 29:1879–1884, 2009.

    Article  PubMed  Google Scholar 

  53. Zhang, Y., C. S. Li, Y. Ye, K. Johnson, J. Poe, S. Johnson, W. Bobrowski, R. Garrido, and C. Madhu. Porcine brain microvessel endothelial cells as an in vitro model to predict in vivo blood–brain barrier permeability. Drug Metab. Dispos. 34:1935–1943, 2006.

    Article  CAS  PubMed  Google Scholar 

  54. Zhang, L., H. Zhu, T. I. Oprea, A. Golbraikh, and A. Tropsha. Qsar modeling of the blood–brain barrier permeability for diverse organic compounds. Pharm. Res. 25:1902–1914, 2008.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This project has been supported by the Utah Science Technology and Research Initiative (USTAR). Microfabrication was performed at the University of Utah Nano Fabrication Facility located in the Sorenson Molecular Biotechnology Building. CNS drugs were provided by Pfizer through the compound transfer program. LC–MS and HPLC–UV was performed at the University of Utah Health Sciences Center (HSC) Core Lab.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Booth.

Additional information

Associate Editor Sriram Neelamegham oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Booth, R., Kim, H. Permeability Analysis of Neuroactive Drugs Through a Dynamic Microfluidic In Vitro Blood–Brain Barrier Model. Ann Biomed Eng 42, 2379–2391 (2014). https://doi.org/10.1007/s10439-014-1086-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-014-1086-5

Keywords

Navigation