Skip to main content
Log in

Adhesion and Function of Human Endothelial Cells Co-cultured on Smooth Muscle Cells

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

To evaluate interactions between human endothelial cells (ECs) and smooth muscle cells (SMCs) for the development of tissue-engineered vessels, we examined the adhesion and key cell properties of human ECs grown on quiescent human aortic SMCs. ECs attached to SMCs spread more slowly than ECs attached to fibronectin surfaces, and ECs aligned along the direction of the SMCs. ECs attached firmly and less than 5% of the cells were removed by shear stresses as high as 300 dyn cm−2. Unlike porcine SMCs and co-cultures, human SMCs or co-cultures do not contract under flow, and the human ECs and SMCs in co-culture align toward the direction of flow. A confluent endothelium could be maintained in co-culture for over 30 days, and some of the ECs reoriented perpendicular to the SMCs after 9 days in static culture. Surface tissue factor levels in ECs and SMCs were less in co-culture than in monoculture. Co-culture induced an increase in calponin expression in SMCs. These findings show that human co-cultures can be maintained for long culture periods, where the endothelium remains confluent and responds to long-term exposure to flow, and EC–SMC interactions lead to an increase in SMC differentiation and an EC surface that is less thrombotic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.

Similar content being viewed by others

References

  1. Ainslie K. M., Garanich J. S., Dull R. O., J. M. Tarbell Vascular smooth muscle cell glycocalyx influences shear stress-mediated contractile response. J. Appl. Physiol. 98:242–249, 2005

    Article  PubMed  CAS  Google Scholar 

  2. Bhat V. D., G. A. Truskey, W. M. Reichert. Fibronectin and avidin–biotin as a heterogeneous ligand system for enhanced endothelial cell adhesion. J. Biomed. Mater. Res. 41:377–385, 1998

    Article  PubMed  CAS  Google Scholar 

  3. Brown D. J., E. M. Rzucidlo, B. L. Merenick, R. J. Wagner, K. A. Martin, R. J. Powell. Endothelial cell activation of the smooth muscle cell phosphoinositide 3-kinase/Akt pathway promotes differentiation. J. Vasc. Surg. 41:509–516, 2005

    Article  PubMed  Google Scholar 

  4. Brown, M., C. S. Wallace, and G. A. Truskey. Vascular Endothelium. In: Wiley Encyclopedia of Biomedical Engineering, edited by M. Akay. Indianapolis, IN: Wiley Publishing Inc., 2006

  5. Chan B. P., W. Liu, B. Klitzman, W. M. Reichert, G. A. Truskey. In vivo performance of dual ligand augmented endothelialized expanded polytetrafluoroethylene vascular grafts. J. Biomed. Mater. Res. B Appl. Biomater. 72:52–63, 2005

    Article  PubMed  CAS  Google Scholar 

  6. Chiu J. J., L. J. Chen, C. N. Chen, P. L. Lee, C. I. Lee. A model for studying the effect of shear stress on interactions between vascular endothelial cells and smooth muscle cells. J. Biomech. 37:531–539, 2004

    Article  PubMed  Google Scholar 

  7. Civelek M., K. Ainslie, J. S. Garanich, J. M. Tarbell. Smooth muscle cells contract in response to fluid flow via a Ca2+-independent signaling mechanism. J. Appl. Physiol. 93:1907–1917, 2002

    PubMed  CAS  Google Scholar 

  8. Davies P. F., G. A. Truskey, H. B. Warren, S. E. O’Connor, B. H. Eisenhaure. Metabolic cooperation between vascular endothelial cells and smooth muscle cells in co-culture: Changes in low density lipoprotein metabolism. J. Cell. Biol. 101:871–879, 1985

    Article  PubMed  CAS  Google Scholar 

  9. Fillinger M. F., L. N. Sampson, J. L. Cronenwett, R. J. Powell, R. J. Wagner. Coculture of endothelial cells and smooth muscle cells in bilayer and conditioned media models. J. Surg. Res. 67:169–178, 1997

    Article  PubMed  CAS  Google Scholar 

  10. George E. L., E. N. Georges-Labouesse, R. S. Patel-King, H. Rayburn, R. O. Hynes. Defects in mesoderm, neural tube and vascular development in mouse embryos lacking fibronectin. Development 119:1079–1091, 1993

    PubMed  CAS  Google Scholar 

  11. Ghrib F., A. C. Brisset, D. Dupouy, A. D. Terrisse, C. Navarro, Y. Cadroy, B. Boneu, P. Sie. The expression of tissue factor and tissue factor pathway inhibitor in aortic smooth muscle cells is up-regulated in synthetic compared to contractile phenotype. Thromb. Haemost. 87:1051–1056, 2002

    PubMed  CAS  Google Scholar 

  12. Heydarkhan-Hagvall S., S. Chien, S. Nelander, Y. C. Li, S. Yuan, J. Lao, J. H. Haga, I. Lian, P. Nguyen, B. Risberg, Y. S. Li. DNA microarray study on gene expression profiles in co-cultured endothelial and smooth muscle cells in response to 4- and 24-h shear stress. Mol. Cell. Biochem. 281:1–15, 2006

    Article  PubMed  CAS  Google Scholar 

  13. Heydarkhan-Hagvall S., G. Helenius, B. R. Johansson, J. Y. Li, E. Mattsson, B. Risberg. Co-culture of endothelial cells and smooth muscle cells affects gene expression of angiogenic factors. J. Cell. Biochem. 89:1250–1259, 2003

    Article  PubMed  CAS  Google Scholar 

  14. Jude B., C. Zawadzki, S. Susen, D. Corseaux. Relevance of tissue factor in cardiovascular disease. Arch. Mal. Coeur. Vaiss. 98:667–671, 2005

    PubMed  CAS  Google Scholar 

  15. Korff T., S. Kimmina, G. Martiny-Baron, H. G. Augustin. Blood vessel maturation in a 3-dimensional spheroidal coculture model: Direct contact with smooth muscle cells regulates endothelial cell quiescence and abrogates VEGF responsiveness. FASEB J. 15:447–457, 2001

    Article  PubMed  CAS  Google Scholar 

  16. Lavender M. D., Z. Pang, C. S. Wallace, L. E. Niklason, G. A. Truskey. A system for the direct co-culture of endothelium on smooth muscle cells. Biomaterials 26:4642–4653, 2005

    Article  PubMed  CAS  Google Scholar 

  17. Lewis J. C., N. L. Jones, M. I. Hermanns, O. Rohrig, C. L. Klein, C. J. Kirkpatrick. Tissue factor expression during coculture of endothelial cells and monocytes. Exp. Mol. Pathol. 62:207–218, 1995

    Article  PubMed  CAS  Google Scholar 

  18. Lo C. M., H. B. Wang, M. Dembo, Y. L. Wang. Cell movement is guided by the rigidity of the substrate. Biophys. J. 79:144–152, 2000

    Article  PubMed  CAS  Google Scholar 

  19. Mitchell S. L., L. E. Niklason. Requirements for growing tissue-engineered vascular grafts. Cardiovasc. Pathol. 12:59–64, 2003

    Article  PubMed  CAS  Google Scholar 

  20. Nackman, G. B., F. R. Bech, M. F. Fillinger, R. J. Wagner, and J. L. Cronenwett. Endothelial cells modulate smooth muscle cell morphology by inhibition of transforming growth factor-beta 1 activation. Surgery 120:418–425; discussion 425–416, 1996

    Google Scholar 

  21. Niklason L. E., J. Gao, W. M. Abbott, K. K. Hirschi, S. Houser, R. Marini, R. Langer. Functional arteries grown in vitro. Science 284:489–493, 1999

    Article  PubMed  CAS  Google Scholar 

  22. Niwa K., T. Kado, J. Sakai, T. Karino. The effects of a shear flow on the uptake of LDL and acetylated LDL by an EC monoculture and an EC–SMC coculture. Ann. Biomed. Eng. 32:537–543, 2004

    Article  PubMed  Google Scholar 

  23. Pang Z., D. A. Antonetti, J. M. Tarbell. Shear stress regulates HUVEC hydraulic conductivity by occludin phosphorylation. Ann. Biomed. Eng. 33:1536–1545, 2005

    Article  PubMed  Google Scholar 

  24. Powell R. J., J. Bhargava, M. D. Basson, B. E. Sumpio. Coculture conditions alter endothelial modulation of TGF-beta 1 activation and smooth muscle growth morphology. Am. J. Physiol. 274:H642–H649, 1998

    PubMed  CAS  Google Scholar 

  25. Powell R. J., J. L. Cronenwett, M. F. Fillinger, R. J. Wagner, L. N. Sampson. Endothelial cell modulation of smooth muscle cell morphology and organizational growth pattern. Ann. Vasc. Surg. 10:4–10, 1996

    Article  PubMed  CAS  Google Scholar 

  26. Rainger G. E., P. Stone, C. M. Morland, G. B. Nash. A novel system for investigating the ability of smooth muscle cells and fibroblasts to regulate adhesion of flowing leukocytes to endothelial cells. J. Immunol. Methods 255:73–82, 2001

    Article  PubMed  CAS  Google Scholar 

  27. RayChaudhury A., M. Elkins, D. Kozien, M. T. Nakada. Regulation of PECAM-1 in endothelial cells during cell growth and migration. Exp. Biol. Med. (Maywood) 226:686–691, 2001

    CAS  Google Scholar 

  28. Sato Y. Activation of latent TGF-beta at the vascular wall-roles of endothelial cells and mural pericytes or smooth muscle cells. J. Atheroscler. Thromb. 2:24–29, 1995

    PubMed  CAS  Google Scholar 

  29. Sato Y., F. Okada, M. Abe, T. Seguchi, M. Kuwano, S. Sato, A. Furuya, N. Hanai, T. Tamaoki. The mechanism for the activation of latent TGF-beta during co-culture of endothelial cells and smooth muscle cells: Cell-type specific targeting of latent TGF-beta to smooth muscle cells. J. Cell. Biol. 123:1249–1254, 1993

    Article  PubMed  CAS  Google Scholar 

  30. Sato Y., R. Tsuboi, R. Lyons, H. Moses, D. B. Rifkin. Characterization of the activation of latent TGF-beta by co-cultures of endothelial cells and pericytes or smooth muscle cells: a self-regulating system. J. Cell. Biol. 111:757–763, 1990

    Article  PubMed  CAS  Google Scholar 

  31. Truskey G. A., J. S. Pirone. The effect of fluid shear stress upon cell adhesion to fibronectin-treated surfaces. J. Biomed. Mater. Res. 24:1333–1353, 1990

    Article  PubMed  CAS  Google Scholar 

  32. van Buul-Wortelboer M. F., H. J. Brinkman, K. P. Dingemans, P. G. de Groot, W. G. van Aken, J. A. van Mourik. Reconstitution of the vascular wall in vitro. A novel model to study interactions between endothelial and smooth muscle cells. Exp. Cell. Res. 162:151–158, 1986

    Article  PubMed  Google Scholar 

  33. Wada Y., A. Sugiyama, T. Kohro, M. Kobayashi, M. Takeya, M. Naito, T. Kodama. In vitro model of atherosclerosis using coculture of arterial wall cells and macrophage. Yonsei Med. J. 41:740–755, 2000

    PubMed  CAS  Google Scholar 

  34. Yang J. T., H. Rayburn, R. O. Hynes. Embryonic mesodermal defects in alpha 5 integrin-deficient mice. Development 119:1093–1105, 1993

    PubMed  CAS  Google Scholar 

  35. Zhang J. C., Q. Ruan, L. Paucz, A. Fabry, B. R. Binder, J. Wojta. Stimulation of tissue factor expression in human microvascular and macrovascular endothelial cells by cultured vascular smooth muscle cells in vitro. J. Vasc. Res. 36:126–132, 1999

    Article  PubMed  CAS  Google Scholar 

  36. Ziegler T., R. W. Alexander, R. M. Nerem. An endothelial cell-smooth muscle cell co-culture model for use in the investigation of flow effects on vascular biology. Ann. Biomed. Eng. 23:216–225, 1995

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Zhengyu Pang and Jeffrey LaMack for their technical advice. This work was supported by NIH Grant R21HL 72189.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George A. Truskey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wallace, C.S., Champion, J.C. & Truskey, G.A. Adhesion and Function of Human Endothelial Cells Co-cultured on Smooth Muscle Cells. Ann Biomed Eng 35, 375–386 (2007). https://doi.org/10.1007/s10439-006-9230-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-006-9230-5

Keywords

Navigation