Skip to main content
Log in

A universal method to calculate the surface energy density of spherical surfaces in crystals

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Surface energy plays an important role in the mechanical performance of nanomaterials; however, determining the surface energy density of curved surfaces remains a challenge. In this paper, we conduct atomic simulations to calculate the surface energy density of spherical surfaces in various crystalline metals. It is found that the average surface energy density of spherical surfaces remains almost constant once its radius exceeds 5 nm. Then, using a geometrical analysis and the scaling law, we develop an analytical approach to estimate the surface energy density of spherical surfaces through that of planar surfaces. The theoretical prediction agrees well with the direct atomic simulations, and thus provides a simple and general method to calculate the surface energy density in crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gibbs, J.W.: The Scientific Papers of J. Willard Gibbs, (vol. 1). Longmans, Green and Company, New York (1906)

    MATH  Google Scholar 

  2. Cammarata, R.C., Sieradzki, K.: Surface and interface stresses. Ann. Rev. Mater. Sci. 24, 215–234 (1994)

    Article  Google Scholar 

  3. Sun, C.Q.: Thermo-mechanical behavior of low-dimensional systems: the local bond average approach. Prog. Mater. Sci. 54, 179–307 (2009)

    Article  Google Scholar 

  4. Duan, H.L., Wang, J., Huang, Z.P., et al.: Size-dependent effective elastic constants of solids containing nano-inhomogeneities with interface stress. J. Mech. Phys. Solids. 53, 1574–1596 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Gao, W., Yu, S.W., Huang, G.Y.: Finite element characterization of the size-dependent mechanical behavior in nanosystems. Nanotechnology 17, 1118–1122 (2006)

    Article  Google Scholar 

  6. Huang, Z.P., Wang, J.: A theory of hyperelasticity of multi-phase media with surface/interface energy effect. Acta Mech. 182, 195–210 (2006)

    Article  MATH  Google Scholar 

  7. Wu, H.A.: Molecular dynamics study on mechanics of metal nanowire. Mech. Res. Commun. 33, 9–16 (2006)

    Article  MATH  Google Scholar 

  8. Zhou, L.G., Huang, H.: Are surfaces elastically softer or stiffer? Appl. Phys. Lett. 84, 1940–1942 (2004)

    Article  Google Scholar 

  9. Miller, R.E., Shenoy, V.B.: Size-dependent elastic properties of nanosized structural elements. Nanotechnology 11, 139–147 (2000)

  10. Wang, G.F., Feng, X.Q.: Timoshenko beam model for buckling and vibration of nanowires with surface effects. J. Phys. D 42, 155411–155415 (2009)

    Article  Google Scholar 

  11. Ru, C.Q.: Size effect of dissipative surface stress on quality factor of microbeams. Appl. Phys. Lett. 94, 051905 (2009)

    Article  Google Scholar 

  12. Shenoy, V.B.: Atomistic calculations of elastic properties of metallic fcc crystal surfaces. Phys. Rev. B. 71, 094104 (2005)

    Article  Google Scholar 

  13. Cuenot, S., Fretigny, C., Champagne, S.D., et al.: Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy. Phys. Rev. B. 69, 165410 (2004)

    Article  Google Scholar 

  14. Mi, C., Jun, S., Kouris, D.A., et al.: Atomistic calculations of interface elastic properties in noncoherent metallic bilayers. Phys. Rev. B. 77, 075425 (2008)

    Article  Google Scholar 

  15. Jo, M., Choi, Y., Koo, Y., et al.: Scaling behavior of the surface energy in face-centered cubic metals. Comput. Mater. Sci. 92, 166–171 (2014)

    Article  Google Scholar 

  16. Nanda, K.K., Maisels, A., Kruis, F.E., et al.: Higher surface energy of free nanoparticles. Phys. Rev. Lett. 91, 106102 (2003)

    Article  Google Scholar 

  17. Naicker, P.K., Cummings, P.T., Zhang, H., et al.: Characterization of titanium dioxide nanoparticles using molecular dynamics simulations. J. Phys. Chem. B. 109, 15243–15249 (2005)

    Article  Google Scholar 

  18. Bian, J.J., Wang, G.F., Feng, X.Q.: Atomistic calculations of surface energy of spherical copper surfaces. Acta Mech. Solida. Sin. 25, 557–561 (2012)

    Article  Google Scholar 

  19. Sun, X.Y., Qi, Y.Z., Ouyang, W., et al.: Energy corrugation in atomic-scale friction on graphite revisited by molecular dynamics simulations. Acta Mech. Sin. 32, 604–610 (2016)

  20. Ouyang, G., Tan, X., Yang, G.W.: Thermodynamic model of the surface energy of nanocrystals. Phys. Rev. B. 74, 195408 (2006)

    Article  Google Scholar 

  21. Lu, H.M., Jiang, Q.: Size-dependent surface energies of nanocrystals. J. Phys. Chem. B. 108, 5617–5619 (2004)

    Article  Google Scholar 

  22. Yao, Y., Wei, Y., Chen, S.: Size effect of the surface energy density of nanoparticles. Surf. Sci. 636, 19–24 (2015)

    Article  Google Scholar 

  23. Wang, Y., Weissmüller, J., Duan, H.L.: Mechanics of corrugated surfaces. J. Mech. Phys. Solids. 58, 1552–1556 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Daw, M.S., Baskes, M.I.: Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals. Phys. Rev. B. 29, 6443 (1984)

    Article  Google Scholar 

  25. Mishin, Y., Mehl, M., Papaconstantopoulos, D., et al.: Structural stability and lattice defects in copper: ab initio, tight-binding, and embedded-atom calculations. Phys. Rev. B. 63, 224106 (2001)

    Article  Google Scholar 

  26. Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995)

    Article  MATH  Google Scholar 

  27. Foiles, S., Baskes, M., Daw, M.: Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Phys. Rev. B. 33, 7983 (1986)

    Article  Google Scholar 

  28. Voter, A.F., Chen, S.P.: Accurate interatomic potentials for Ni, Al and Ni\(_3\)Al. MRS Proc. 82, 175 (1986)

    Article  Google Scholar 

  29. Adams, J., Foiles, S., Wolfer, W.: Self-diffusion and impurity diffusion of fee metals using the five-frequency model and the embedded atom method. J. Mater. Res. 4, 102–112 (1989)

    Article  Google Scholar 

  30. Mendelev, M., Han, S., Srolovitz, D., et al.: Development of new interatomic potentials appropriate for crystalline and liquid iron. Philos. Magn. 83, 3977–3994 (2003)

    Article  Google Scholar 

  31. Zhou, X.W., Wadley, H.N.G., Johnson, R.A., et al.: Atomic scale structure of sputtered metal multilayers. Acta Mater. 49, 4005–4015 (2001)

    Article  Google Scholar 

  32. Wei, Y., Chen, S.: Size-dependent surface energy density of spherical face-centered-cubic metallic nanoparticles. J. Nanosci. Nanotechnol. 15, 9457–9463 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

This project was supported by the National Natural Science Foundation of China (Grants 11272249 and 11525209).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xinrui Niu or Gangfeng Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Bian, J., Niu, X. et al. A universal method to calculate the surface energy density of spherical surfaces in crystals. Acta Mech. Sin. 33, 77–82 (2017). https://doi.org/10.1007/s10409-016-0605-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-016-0605-z

Keywords

Navigation