Skip to main content
Log in

Toarcian ammonitico rosso facies from the South Iberian Paleomargin (Betic Cordillera, southern Spain): paleoenvironmental reconstruction

  • Original Article
  • Published:
Facies Aims and scope Submit manuscript

Abstract

The Toarcian ammonitico rosso facies were widespread in the Mediterranean Tethys (between 15 and 30°N latitude) in the North Gondwana Paleomargin (Apulian promontory and North African Margin) and southern Iberian Paleomargin (Betic Cordillera). These facies were associated with epi-oceanic slopes of a sedimentary swell-trough system related to the extensional phase of continental rifting. In the Median Subbetic (southern Iberian Paleomargin), ammonitico rosso facies show a progressive change through the Toarcian on the hemipelagic swells after the fragmentation of a carbonate platform. During the latest Pliensbachian to the Bifrons Zone (middle Toarcian), sedimentation was dominated by epi-oceanic limestone and marl with a high influence of neighboring shallow-water environments represented by common turbidite–tempestite beds (with foraminifera and ooids). Microfossils and trace fossils provide no evidence of oxygen-restricted conditions. In the Gradata Zone (middle Toarcian), the ammonitico rosso facies appear (red nodular limestone and marly-limestone rich in the trace fossils Phycodes, Planolites, Thalassinoides, and Chondrites). Progressively more pelagic conditions and a restricted influence of emergent lands and carbonate platforms are reflected by the reduced input of turbidite–tempestite beds and increase of ammonitellas and radiolaria. A sea-level fall affected the hemipelagic swell during the middle–late Toarcian and favored sediment-winnowing by currents, with subsequent nodulation. The combined action of burrowing, compaction, and dissolution controlled nodulation, which ranges from diffuse nodules to sharp-edged nodules. The sedimentation rate conditioned the time available for nodule growth, the migration of the Ca2+ and HCO3 precipitation horizon, and the degree of nodulation (from horizons with diffuse-edged nodules to semi-continuous to continuous layers formed by the coalescence of sharp-edged nodules).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Aberhan M (2001) Bivalve palaeobiogeography and the Hispanic Corridor: time of opening and effectiveness of a proto-Atlantic seaway. Palaeogeogr Palaeoclimatol Palaeoecol 165:375–394

    Article  Google Scholar 

  • Aberhan M (2002) Opening of the Hispanic Corridor and Early Jurassic bivalve biodiversity. Geol Soc Lond Spec Publ 194:1–11

    Article  Google Scholar 

  • Bailey TR, Rosenthal Y, McArthur JM, van de Schootbrugge B, Thirlwall MF (2003) Paleoceanographic changes of the Late Pliensbachian–Early Toarcian interval: a possible link to the genesis of an oceanic anoxic event. Earth Planet Sci Lett 212:307–320

    Article  Google Scholar 

  • Bartolini A, Nocchi M, Baldanza A, Parisi G (1992) Benthic life during the Early Toarcian Anoxic Event in the Southwestern Tethyan Umbria-Marche Basin, Central Italy. Studies in Benthic Foraminifera, Benthos’90, Tokai University Press, Sendai, pp 323–338

  • Berner RA (1969) Goethite stability and the origin of red beds. Geochim Cosmochim Acta 33:267–273

    Article  Google Scholar 

  • Bodin S, Mattioli E, Frölich S, Marshall JD, Boutib L, Lahsini S, Redfern J (2010) Toarcian carbon isotope shifts and nutrient changes from the Northern margin of Gondwana (High Atlas, Morocco, Jurassic): palaeoenvironmental implications. Palaeogeogr Palaeoclimatol Palaeoecol 297:377–390

    Article  Google Scholar 

  • Bosellini A (1973) Modello geodinamico e paleotettonico delle Alpi Meridionali durante il Giurassico–Cretacico. Sue possibili applicazioni agli Appennini. In: Accordi B (ed) Moderne vedute sulla Geologia dell’Appennino. Accademia Nazionale Lincei, Quaderni 183:163–205

  • Boulila S, Galbrum B, Huret E, Hinnov LA, Rouget I, Gardin S, Bartolini A (2014) Astronomical calibration of the Toarcian stage: implications for sequence stratigraphy and duration of the early Toarcian OAE. Earth Planet Sci Lett 386:98–111

    Article  Google Scholar 

  • Braga JC (1983) Ammonites del Domerense de la Zona Subbética (Cordilleras Béticas, Sur de España). PhD Thesis Universidad Granada, pp 410

  • Braga JC, Comas MC, Delgado F, García-Hernández M, Jiménez AP, Linares A, Rivas P, Vera JA (1981) The Liassic Rosso Ammonitico Facies in the Subbetic Zone (Spain). Genetic consideration. In: Farinacci A, Elmi S (eds) Rosso Ammonitico symposium proceedings. Tecnocienza, Rome, pp 61–76

    Google Scholar 

  • Caracuel JE, Monaco P, Olóriz F (1997) Eventos de depósito y colonización del substrato en facies ammonitico rosso (Subbético externo, Kimmeridgiense). Geogaceta 21:63–65

    Google Scholar 

  • Caracuel JE, Monaco P, Olóriz F (2000) Taphonomic tools to evaluate sedimentation rates and stratigraphic completeness in rosso ammonitico facies (epioceanic Tethyan Jurassic). Riv Ital Paleontol Stratigr 106:353–368

    Google Scholar 

  • Cecca F, Fourcade E, Azéma J (1992) The disappearance of the “Ammonitico Rosso”. Palaeogeogr Palaeoclimatol Palaeoecol 99:55–70

    Article  Google Scholar 

  • Clari PA, Martire L (1996) Interplay of cementation, mechanical compaction and chemical compaction in nodular limestones of the Rosso Ammonitico Veronese (middle–upper Jurassic, northeastern Italy). J Sediment Res 66:447–458

    Google Scholar 

  • Clari PA, Marini P, Pastorini M, Pavia G (1984) Il Rosso Ammonitico Inferiore (Baiociano–Calloviano) nei nonti lessini settentrionali (Verona). Riv Ital Paleontol Stratigr 90:15–86

    Google Scholar 

  • Coimbra R, Immenhauser A, Olóriz F (2009) Matrix micrite δ13C reveals synsedimentary marine lithification in Upper Jurassic ammonitico rosso limestones (Betic Cordillera, SE Spain). Sediment Geol 219:332–348

    Article  Google Scholar 

  • Comas MC (1978) Sobre la geología de los Montes Orientales: Sedimentación paleogeográfica desde el Jurásico al Mioceno inferior (Zona Subbética, Andalucía). PhD Thesis, Universidad Bilbao, pp 323

  • Comas MC, Olóriz F, Tavera JM (1981) The red nodular limestones (Ammonitico Rosso) and associated facies: a key for settling slopes or swell areas in the Subbetic Upper Jurassic submarine topography (southern Spain). In: Farinacci A, Elmi S (eds) Rosso ammonitico symposium proceedings. Tecnocienza, Rome, pp 113–136

    Google Scholar 

  • Coudray J, Michel D (1981) Analyse sédimentologique des “calcaires noduleux” qui encadrent les radiolarites du dinantien de la Montagne Noire (France) et apport des donnes expérimentales a la compréhension de leur genèse. In: Farinacci A, Elmi S (eds) Proceedings rosso ammonitico symposium. Tecnoscienza, Rome, pp 149–167

    Google Scholar 

  • D’Argenio B (1974) Le Piattaforme Carbonatiche Periadriatiche. Una rassegna di problemi nel quadro geodinámico del’area mediterranea. Memorie della Società Geologica Italiana 13:1–28

    Google Scholar 

  • Danise S, Twichett RJ, Little CTS, Clémence ME (2013) The impact of global warming and anoxia on marine benthic community dynamics: an example from the Toarcian (Early Jurassic). PLoS One 8:e56255

    Article  Google Scholar 

  • Dera G, Pellenard P, Neige P, Deconinck JF, Puceat E, Dommergues JL (2009) Distribution of clay minerals in Early Jurassic Peritethyan seas: palaeoclimatic significance inferred from multiproxy comparisons. Palaeogeogr Palaeoclimatol Palaeoecol 271:39–51

    Article  Google Scholar 

  • Dera G, Brigaud B, Monna F, Laffont R, Puceat E, Deconinck JF, Pellenard P, Joachimski MM, Durlet C (2011) Climatic ups and downs in a disturbed Jurassic world. Geology 39:215–218

    Article  Google Scholar 

  • Dercourt J, Zonenshain LP, Ricou LE, Kazmin VG, Le Pichon X, Knipper AL, Grandjacquet C, Sborshchikov IM, Boulin J, Sorokhtin O, Geyssant J, Lepvrier C, Biju-Duval B, Sibuet JC, Savostin LA, Westphal M, Lauer JP (1985) Presentation de 9 cartes paléogéographiques a 1:20.000.000 s’étendent de l’Atlantique au Pamir pour la période du Lias à l’actuel. Bulletin de la Societé Géologique de France 8:635–652

    Google Scholar 

  • El Kadiri K (2002) “Tectono-eustatic sequences” of the Jurassic successions from the Dorsale Calcaire (Internal Rif, Morocco): evidence from an eustatic and tectonic scenario. Geol Romana 36:71–103

    Google Scholar 

  • Eller MG (1981) The red chalk of Eastern England: a Cretaceous analogue of rosso ammonitico. In: Farinacci A, Elmi S (eds) Rosso ammonitico symposium proceedings. Tecnocienza, Rome, pp 207–231

    Google Scholar 

  • Elmi S (1981a) Classification typologique et genetique des ammonitico-rosso et des facies noduleux ou grumeleux: essai de synthese. In: Farinacci A, Elmi S (eds) Rosso ammonitico symposium proceedings. Tecnocienza, Rome, pp 233–249

    Google Scholar 

  • Elmi S (1981b) Sédimentation rythmique et organisation séquentielle dans les ammonitico-rosso et les facies associes du Jurassique de la Méditerranée Occidentale. Interpretation des grumeaux et des nodules. In: Farinacci A, Elmi S (eds) Rosso ammonitico symposium proceedings. Tecnocienza, Rome, pp 251–299

    Google Scholar 

  • Elmi S, Almeras Y (1984) Physiography, palaeotectonics and palaeoenvironments as controls of changes in ammonite and brachiopod communities (an example from the Early and Middle Jurassic of Western Algeria). Palaeogeogr Palaeoclimatol Palaeoecol 47:347–360

    Article  Google Scholar 

  • Elmi S, Ameur M (1984) Quelques environnements des facies noduleux mésogées. Geol Romana 23:13–22

    Google Scholar 

  • Ettaki M, Chellaï EH (2005) Le Toarcien inférieur du Haut Atlas de Todrha-Dadès (Maroc): sedimentologie et lithostratigraphie. C R Géosci 337:814–823

    Article  Google Scholar 

  • Ettaki M, Chellaï EH, Milhi A, Sadki D, Boudchiche L (2000) Le passage Lias moyen-Lias supérieur dans la région de Todrha-Dadès: événements biosédimentaires et géodynamiques (Haut Atlas central, Maroc). C R Acad Sci (Paris) 331:667–674

    Google Scholar 

  • Flügel E (1982) Microfacies analysis of limestones. Springer, Berlin, pp 633

    Google Scholar 

  • Flügel E (2004) Microfacies of carbonate rocks. Springer, Heidelberg, pp 976

    Book  Google Scholar 

  • Fohrer B, Samankassou E (2005) Paleoecological control of ostracod distribution in a Pennsylvanian Auernig cyclothem of the Carnic Alps, Austria. Palaeogeogr Palaeoclimatol Palaeoecol 225:317–330

    Article  Google Scholar 

  • Frimmel A, Oschmann W, Schwark L (2004) Chemostratigraphy of the Posidonian Black Shale, SW Germany I. Influence of sea-level variation on organic facies evolution. Chem Geol 206:199–230

    Article  Google Scholar 

  • Funk H, Oberhanski R, Pfiffner A, Schmid S, Wildi W (1987) The evolution of the Northern Margin of Tethys in Eastern Switzerland. Episodes 10:102–106

    Google Scholar 

  • Fürsich FT (1973) Thalassinoides and the origin of nodular limestone in the Corallian Beds (Upper Jurassic) of southern England. Neues Jahrb Geol Palaontol Abh 3:136–156

    Google Scholar 

  • Fürsich FT (1979) Genesis, environments, and ecology of Jurassic hardgrounds. Neues Jahrb Geol Palaontol Abh 158:1–163

    Google Scholar 

  • Galbrun B, Mouterde R, Baudin F, Danelian T, Dercourt J (1994) L’Ammonitico Rosso Toarcien de la zone ionenne (Epire, Grèce): magnétostratigraphie et biostratigraphie. Eclogae Geol Helv 87:91–111

    Google Scholar 

  • García-Hernández M, López-Garrido AC, Rivas P, Sanz de Galdeano C, Vera JA (1980) Mesozoic paleogeographic evolution in the external zones of the Betic Cordillera (Spain). Geol Mijnbouw 59:155–168

    Google Scholar 

  • García-Hernández M, Lupiani E, Vera JA (1987) La sedimentación liásica en el sector central del Subbético medio: registro de la evolución de un rift intracontinental. Acta Geológica Hispánica 21–22:329–337

    Google Scholar 

  • García-Hernández M, López-Garrido AC, Martín-Algarra A, Molina JM, Ruiz-Ortiz PA, Vera JA (1989) Las discontinuidades mayores del Jurásico de las Zonas Externas de las Cordilleras Béticas: análisis e interpretación de los ciclos sedimentarios. Cuad Geol Ibérica 13:35–52

    Google Scholar 

  • Gómez JJ, Fernández-López SR (1994) Condensation processes in shallow platforms. Sediment Geol 92:147–159

    Article  Google Scholar 

  • Gong Y (2001) Trace fossils from the flysch sequences of the Silurian, Carboniferous and Triassic of the Tianshan and Kunlun-Qinling orogenic belts of northwestern China. Acta Palaeontol Sin 40:177–188

    Google Scholar 

  • González-Donoso JM, Linares A, López-Garrido AC, Vera JA (1971) Bosquejo estratigráfico del Jurásico de las Cordilleras Béticas. Cuad Geol Ibérica 2:55–90

    Google Scholar 

  • Gradstein FM, Ogg JG, Smith AG (2004) A geologic time scale 2004. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Hallam A (1967) Sedimentology and palaeogeographic significance of certain red limestones and associated beds in the Lias of the Alpine region. Scott J Geol 3:195–220

    Article  Google Scholar 

  • Hallam A (1988) A reevaluation of Jurassic Eustasy in the light of new data and the revised Exxon curve. Soc Econ Paleontol Mineral Spec Publ 42:261–273

    Google Scholar 

  • Hallam A (2001) A review of the broad pattern of Jurassic sea-level changes and their possible causes in the light of current knowledge. Palaeogeogr Palaeoclimatol Palaeoecol 167:23–37

    Article  Google Scholar 

  • Han Y, Pickerill RK (1994) Phycodes templus isp. nov. from the Lower Devonian of northwestern New Brunswick, eastern Canada. Atl Geol 30:37–46

    Google Scholar 

  • Haq BU, Hardenbol J, Vail PR (1987) Chronology of fluctuating sea-levels from the Triassic. Science 235:1156–1167

    Article  Google Scholar 

  • Helm C (2005) Riffe und fazielle Entwicklung der florigemma-Bank (Korallenoolith, Oxfordium) im Süntel und östlichen Wesergebirge (NW-Deustchland). Geologische Beiträge Hannover 7:1–39

    Google Scholar 

  • Hermes JJ (1978) The stratigraphy of the Subbetic and Southern Prebetic of the Velez Rubio–Caravaca area and its bearing on transcurrent faulting in the Betic Cordilleras of southern Spain. Kon Ned Akad Wet Proc 81:1–54

    Google Scholar 

  • Hermoso M, Pellenard P (2014) Continental weathering and climatic changes inferred from clay mineralogy and paired carbon isotopes across the early to middle Toarcian in the Paris Basin. Palaeogeogr Palaeoclimatol Palaeoecol 399:385–393

    Article  Google Scholar 

  • Hernández-Molina FJ, Larter RD, Rebesco M, Maldonado A (2006) Miocene reversal of bottom water flow along the Pacific Margin of the Antarctic Peninsula: stratigraphic evidence from a contourite sedimentary tail. Mar Geol 228:93–116

    Article  Google Scholar 

  • Jacquin TH, De Graciansky PC (1998) Major transgressive/regressive cycles: the stratigraphic signature of European basin development. In: De Graciansky PC, Hardenbol J, Jacquin TH, Vail PR (eds) Mesozoic and Cenozoic sequence stratigraphy of European Basins. SEPM Spec Publ 60:15–29

  • Jenkyns HC (1971) The genesis of condensed sequences in the Tethyan Jurassic. Lethaia 4:327–352

    Article  Google Scholar 

  • Jenkyns HC (1974) Origin of red nodular limestones (Ammonitico Rosso, Knollenkalke) in the Mediterranean Jurassic: a diagenetic model. In: Hsü KJ, Jenkyns HC (eds) Pelagic sediments on lands and under the sea. Blackwell, London, pp 249–271

    Google Scholar 

  • Jenkyns HC, Senior JR (1991) Geological evidence for intra-Jurassic faulting in the Wessex Basin and its margins. J Geol Soc 148:245–260

    Article  Google Scholar 

  • Jiménez AP (1986) Estudio paleontológico de los ammonites del Toarciense inferior y medio de las Cordilleras Béticas (Dactylioceratidae e Hildoceratidae). PhD Thesis, Universidad de Granada, pp 252

  • Jiménez AP, Rivas P (1979) El Toarcense en la Zona Subbética. Cuadernos de Geología 10:397–411

    Google Scholar 

  • Jiménez AP, Jiménez de Cisneros C, Rivas P, Vera JA (1996) The early Toarcian Anoxic Event in the westernmost Tethys (Subbetic): paleogeographic and paleobiogeographic significance. J Geol 104:399–416

    Article  Google Scholar 

  • Kafousia N, Karakitsios V, Mattioli E, Kenjo S, Jenkyns HC (2014) The Toarcian Oceanic Anoxic Event in the Ionian Zone, Greece. Palaeogeogr Palaeoclimatol Palaecoecol 393:135–145

    Article  Google Scholar 

  • Kennedy WJ, Garrison RE (1975) Morphology and genesis of nodular chalks and hardgrounds in the Upper Cretaceous of southern England. Sedimentology 22:311–386

    Article  Google Scholar 

  • Krencker FN, Bodin S, Suan G, Heimhofer U, Kabiri L, Immenhauser A (2015) Toarcian extreme warmth led to tropical cyclone intensification. Earth Planet Sci Lett 425:120–130

    Article  Google Scholar 

  • Linares A, Rivas P (1971) Metacronía de Ammonitico Rosso Liásico en la Zona Subbética. Cuad Geol Ibérica 2:183–204

    Google Scholar 

  • Mamet B, Préat A (2006) Jurassic microfacies, Rosso Ammonitico limestone, Subbetic Cordillera, Spain. Rev Esp Micropaleontol 38:219–228

    Google Scholar 

  • Mángano MG, Carmona NB, Buatois LA, Muñiz Guinea F (2005) A new ichnospecies of Arthrophycus from the Upper Cambrian–Lower Tremadocian of Northwest Argentina: implications for the Arthrophycid lineage and potential in ichnostratigraphy. Ichnos 12:179–190

    Article  Google Scholar 

  • Mariotti N, Schiavinotto F (1977) Contribution to the paleontology of Toarcian “Rosso Ammonitico” in the umbro-marchigiana facies: foraminifers and non-ammonitiferous fauna from Monte la Pelosa (Polino, Terni). Geol Romana 16:285–307

    Google Scholar 

  • Marok A, Reolid M (2012) Lower Jurassic sediments from the Rhar Roubane Mountains (Western Algeria): stratigraphic precisions and synsedimentary block-faulting. J Afr Earth Sc 76:50–65

    Article  Google Scholar 

  • McArthur JM, Algeo TJ, van de Schootbrugge B, Li Q, Howarth RJ (2008) Basinal restriction, black shales, Re-Os dating, and the Early Toarcian (Jurassic) oceanic anoxic event. Paleoceanography 23:PA4217

  • McLaughlin PI, Brett CE (2004) Sequence stratigraphy and stratinomy of marine hardgrounds: examples from the Middle Paleozoic of Eastern Laurentia. Geological Society of America, Abstracts with programs 36:110

    Google Scholar 

  • Miller W III (2001) Thalassinoides-Phycodes compound burrow systems in Paleocene deep-water limestone, Southern Alps of Italy. Palaeogeogr Palaeoclimatol Palaecoecol 170:149–156

    Article  Google Scholar 

  • Monaco P, Trecci T (2014) Ichnocoenosis in the Macigno turbidite basin system, Lower Miocene, Trasimero (Umbrian Apennines, Italy). Ital J Geosci 133:116–130

    Article  Google Scholar 

  • Monaco P, Nocchi M, Ortega-Huertas M, Palomo I, Martínez F, Chiavini G (1994) Depositional trends in the Valdorbia section (Central Italy) during the Early Jurassic, as revealed by micropaleontology, sedimentology and geochemistry. Eclogae Geol Helv 87:157–223

    Google Scholar 

  • Monaco P, Caracuel JE, Giannetti A, Soria JM, Yébenes A (2007) Thalassinoides and Ophiomorpha as cross-facies trace fossils of crustaceans from shallow-to-deep-water environments: Mesozoic and Tertiary examples from Italy and Spain. In: 3rd symposium on Mesozoic and Cenozoic Decapod Crustaceans, Museo di Storia Naturale di Milano, 79–82

  • Mouterde R, Linares A (1960) Nuevo yacimiento fosilífero del Lías superior, cerca de Iznalloz (Provincia de Granada, Cordillera Bética). Notas y Comunicaciones IGME 58:101–104

    Google Scholar 

  • Müller J, Fabricius F (1974) Magnesian-calcite nodules in the Ionian deep-sea: an actualistic model for the formation of some nodular limestones. In: Hsü KJ, Jenkyns HC (eds) Pelagic sediments on land and under the sea. Blackwell, London, pp 235–247

    Google Scholar 

  • Mullins HT, Neumann AC, Wilber RJ, Boardman MR (1980) Nodular carbonate sediment on Bahamian slopes: possible precursor to nodular limestones. J Sediment Petrol 50:117–131

    Google Scholar 

  • Neto de Carvalho C (2008) Mais recente e mais profundo: Treptichnus (Phycodes) pedum (Seilacher) no Devónico Inferior de Barrancos, Zona de Ossa Morena (Portugal). Comunicaçoes Geológicas 95:167–171

    Google Scholar 

  • Nieto LM, Ruiz-Ortiz PA, Rey J, Benito MI (2008) Strontium-isotope stratigraphy as a constraint on the age of condensed levels: examples from the Jurassic of the Subbetic Zone (southern Spain). Sedimentology 55:1–29

    Google Scholar 

  • Ogg J, Hinnov LA (2012) The Jurassic period. In: Gradstein F, Ogg J, Ogg G, Smith D (eds) A geologic time scale 2012, Chap 26. Elsevier, Amsterdam, pp 731–791

    Google Scholar 

  • Olóriz F, Reolid M, Rodríguez-Tovar FJ (2012) Palaeogeography and relative sea-level history forcing eco-sedimentary contexts in Late Jurassic epicontinental shelves (Prebetic Zone, Betic Cordillera): an ecostratigraphic approach. Earth Sci Rev 111:154–178

    Article  Google Scholar 

  • Osete ML, Gómez JJ, Pavón-carrasco FJ, Villalaín JJ, Palencia A, Ruiz-Martínez VC, Heller F (2011) The evolution of the Iberia during the Jurassic from paleomagnetic data. Tectonophysics 502:105–120

    Article  Google Scholar 

  • Palmer T, Wilson M (2004) Calcite precipitation and dissolution of biogenic aragonite in shallow Ordovician calcite seas. Lethaia 37:417–427

    Article  Google Scholar 

  • Palomo I (1987) Mineralogía y geoquímica de sedimentos pelágicos del Jurásico inferior de las Cordilleras Béticas (SE de España). PhD Thesis Universidad de Granada, pp 345

  • Parisi G, Ortega-Huertas M, Nocchi M, Palomo I, Monaco P, Martínez F (1996) Stratigraphy and geochemical anomalies of the Early Toarcian oxygen-poor interval in the Umbria Marche Apennines (Italy). Geobios 29:469–484

    Article  Google Scholar 

  • Pereira R, Alves TM (2012) Tectono-stratigraphic signature of multiphased rifting on divergent margins (deep-offshore southwest Iberia, North Atlantic). Tectonics 31:TC4001

  • Petrash DA, Lalonde SV, Gingras MK, Konhauser KO (2010) A surrogate approach to studying the chemical reactivity of burrow mucous lining in marine sediments. Palaios 26:594–600

    Article  Google Scholar 

  • Reolid M (2014) Stable isotopes on foraminifera and ostracods for interpreting incidence of the Toarcian Oceanic Anoxic Event in Westernmost Tethys: role of water stagnation and productivity. Palaeogeogr Palaeoclimatol Palaeoecol 395:77–91

    Article  Google Scholar 

  • Reolid M, Nagy J, Rodríguez-Tovar FJ, Olóriz F (2008) Foraminiferal assemblages as palaeoenvironmental bioindicators in Late Jurassic epicontinental platforms: relation with trophic conditions. Acta Palaeontol Pol 53:706–722

    Article  Google Scholar 

  • Reolid M, Molina JM, Löser H, Navarro V, Ruiz-Ortiz PA (2009) Coral biostromes of the Middle Jurassic from the Subbetic (Betic Cordillera, southern Spain): facies, coral taxonomy, taphonomy and palaeoecology. Facies 55:575–593

    Article  Google Scholar 

  • Reolid M, Nieto LM, Rey J (2010) Taphonomy of cephalopod assemblages from Middle Jurassic hardgrounds of pelagic swells (South-Iberian palaeomargin, Western Tethys). Palaeogeogr Palaeoclimatol Palaeoecol 292:257–271

    Article  Google Scholar 

  • Reolid M, Rodríguez-Tovar FJ, Marok A, Sebane A (2012) The Toarcian Oceanic Anoxic Event in the Western Saharan Atlas, Algeria (North African Paleomargin): role of anoxia and productivity. GSA Bull 124:1646–1664

    Article  Google Scholar 

  • Reolid M, Chakiri S, Bejjaji Z (2013a) Adaptative strategies of the Toarcian benthic foraminiferal assemblages from the Middle Atlas (Morocco): palaeoecological implications. J Afr Earth Sci 84:1–12

    Article  Google Scholar 

  • Reolid M, Nieto LM, Sánchez-Almazo IM (2013b) Caracterización geoquímica de facies pobremente oxigenadas en el Toarciense inferior (Jurásico inferior) del Subbético Externo. Revista de la Sociedad Geológica de España 26:69–84

    Google Scholar 

  • Reolid M, Marok A, Sebane A (2014a) Foraminiferal assemblages and geochemistry for interpreting the incidence of Early Toarcian environmental changes in North Gondwana palaeomargin (Traras Mountains, Algeria). J Afr Earth Sci 95:105–122

    Article  Google Scholar 

  • Reolid M, Mattioli E, Nieto LM, Rodríguez-Tovar FJ (2014b) The Early Toarcian Oceanic Anoxic Event in the external subbetic (South Iberian Palaeomargin, Westernmost Tethys): geochemistry, nannofossils and ichnology. Palaeogeogr Palaeoclimatol Palaeoecol 411:79–94

    Article  Google Scholar 

  • Rivas P (1972) Estudio paleontológico-estratigráfico del Lías (Sector Central de las Cordilleras Béticas). PhD Thesis, Universidad de Granada, Short Publication 29:77 pp

  • Rodríguez-Tovar FJ, Reolid M (2013) Environmental conditions during the Toarcian Oceanic Anoxic Event (T-OAE) in the westernmost Tethys: influence of the regional context on a global phenomenon. Bull Geosci 88:697–712

    Article  Google Scholar 

  • Rodríguez-Tovar FJ, Uchman A (2010) Ichnofabric evidence for the lack of bottom anoxia during the Lower Toarcian Oceanic Anoxic Event in the Fuente de la Vidriera section, Betic Cordillera, Spain. Palaios 25:576–587

    Article  Google Scholar 

  • Röhl HJ, Schmid-Röhl A, Oschmann W, Frimmel A, Schwark L (2001) The Posidonian Shale (Lower Toarcian) of SW-Germany: an oxygen-depleted ecosystem controlled by sea level and palaeoclimate. Palaeogeogr Palaeoclimatol Palaeoecol 165:27–52

    Article  Google Scholar 

  • Rozic B, Smuc A (2011) Gravity-flow deposits in the Toarcian Perbla Formation (Slovenian Basin, NW Slovenia). Rivista Italiana di Paleontologie e Stratigrafia 117:283–294

    Google Scholar 

  • Ruebsam W, Münzberger P, Schwark L (2014) Chronology of the Early Toarcian Environmental crisis in the Lorraine Sub-Basin (NE Paris Basin). Earth Planet Sci Lett 404:273–282

    Article  Google Scholar 

  • Sabatino N, Neri R, Bellanca A, Jenkyns HC, Baudin F, Parisi G, Masetti D (2009) Carbon-isotope records of the Early Jurassic (Toarcian) oceanic anoxic event from the Valdorbia (Umbria–Marche Apennines) and Monte Mangart (Julian Alps) sections: palaeoceanographic and stratigraphic implications. Sedimentology 56:1307–1328

    Article  Google Scholar 

  • Sælen G, Tyson RV, Telnæs N, Talbot MR (2000) Contrasting watermass conditions during the deposition of the Whitby Mudstone (Lower Jurassic) and Kimmeridge Clay (Upper Jurassic) formations, UK. Palaeogeogr Palaeoclimatol Palaeoecol 163:163–196

    Article  Google Scholar 

  • Sandoval J, Bill M, Aguado R, O’Dogherty L, Rivas P, Morard A, Guex J (2012) The Toarcian in the Subbetic basin (southern Spain): bio-events (ammonite and calcareous nannofossils) and carbon-isotope stratigraphy. Palaeogeogr Palaeoclimatol Palaeoecol 342–343:40–63

    Article  Google Scholar 

  • Santantonio M (1993) Facies associations and evolution of pelagic carbonate platform/basin systems: examples from the Italian Jurassic. Sedimentology 40:1039–1067

    Article  Google Scholar 

  • Santantonio M (1994) Pelagic carbonate platforms in the geologic record: their classification, and sedimentary and paleotectonic evolution. AAPG Bull 78:122–141

    Google Scholar 

  • Savrda CE (2012) Chalk and related deep-marine carbonates. In: Knaust D, Bromley RG (eds) Trace fossils as indicators of sedimentary environments, development in Sedimentology 64:777–806, Elsevier, Amsterdam

  • Seyfried H (1978) Der subbetische Jura von Murcia (Südest-Spanien). Geol Jahrbuch 29:3–201

    Google Scholar 

  • Seyfried H (1979) Ensayo sobre el significado paleogeográfico de los sedimentos del Jurásico de las Cordilleras Béticas Orientales. Cuadernos de Geología 10:317–348

    Google Scholar 

  • Sibuet JC, Rouzo S, Srivastava S (2012) Plate tectonic reconstructions and paleogeographic maps of the central and North Atlantic oceans. Can J Earth Sci 49:1395–1415

    Article  Google Scholar 

  • Sohn IG (1960) Paleozoic species of Bairdia and related genera—revision of some Paleozoic ostracod genera. U.S. Geological Survey Professional Paper 330-B:107–160

  • Soussi M, Ben Ismail MH (2000) Platform collapse and pelagic seamount facies: Jurassic development of central Tunisia. Sediment Geol 133:93–113

    Article  Google Scholar 

  • Soussi M, Boughdiri M, Enay R, Mangold C (1998) Ammonitico Rosso-like facies of Late Toarcian age in the northwestern Tunisian Atlas belt: consequences for correlations and palaeogeography. C R Acad Sci Ser IIA Earth Planet Sci 327:135–140

    Google Scholar 

  • Soussi M, Enay R, Mangold C, Turki MM (2000) The Jurassic events and their sedimentary and stratigraphic records on the Southern Tethyan margin in Central Tunisia. Mémoires Musée National d’Histoire Naturelle, Paris 182:57–92

    Google Scholar 

  • Suan G, Rolleau L, Mattioli E, Suchéras-Marx B, Rousselle B, Pittet B, Vincent P, Martin JE, Léna A, Spangenberg JE, Föllmi KB (2013) Palaeoenvironmental significance of Toarcian black shales and event deposits from southern Beaujolais, France. Geol Mag 150:728–742

    Article  Google Scholar 

  • Uchman A, Tchoumatchenco P (2003) A mixed assemblage of deep-sea and shelf trace fossils from the Lower Cretaceous (Valanginian) Kamchia Formation in the Troyan Region, Central Fore-Balkan, Bulgaria. Ann Soc Geol Pol 73:27–34

    Google Scholar 

  • Vera JA (1988) Evolución de los sistemas de depósito en el Margen Ibérico de la Cordillera Bética. Revista de la Sociedad Geológica de España 1:373–391

    Google Scholar 

  • Vera JA (2001) Evolution of the South Iberian Continental Margin. In: Ziegler PA Cavazza W, Robertson AHF, Crasquin-Soleau S (eds) Peri-Tethys Memoir 6: Peri-Tethyan Rift/Wrench Basins and Passive Margins. Mémoires du Muséum National d’Histoire Naturelle 186:109–143

  • Vogel K, Bundschuh M, Glaub I, Hofmann K, Radtke G, Schmidt H (1995) Hard substrate ichnocoenoses and their relations to light intensity and marine bathymetry. Neues Jahrb Geol Palaontol Abh 195:49–61

    Article  Google Scholar 

  • Winterer EL, Bosellini A (1981) Subsidence and sedimentation on Jurassic passive Continental Margin, Southern Alps, Italy. AAPG Bull 65:394–421

    Google Scholar 

  • Yelles-Chaouche AK, Ait-Ouali R, Bracène R, Derder MEM, Djellit H (2001) Chronologie de l’ouverture du bassin des Ksour (Atlas Saharien, Algérie) au début du Mésozoïque. Bulletin de la Société Géologique de France 172:285–293

    Article  Google Scholar 

Download references

Acknowledgments

The research activity was supported by Projects RYC-2009-04316 (Ramón y Cajal Program), CGL2012-33281 (Secretaría de Estado de I + D + I, Spain), RNM-3715 and P11-RNM-7408 (Junta de Andalucía), and UJA2011/12/17 (Universidad de Jaén-Caja Rural de Jaén), and the research groups RNM-178, RNM-200 (Junta de Andalucía). Authors warmly acknowledges Antonio Piedra (Laboratory of Geology, Universidad de Jaén), whose help in sample preparation (polished slabs and thin-sections) was very helpful. The authors thank the editor Maurice Tucker and two anonymous reviewers for constructive comments that improved the manuscript. We thank Jean Sanders for reviewing the grammar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matías Reolid.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reolid, M., Rivas, P. & Rodríguez-Tovar, F.J. Toarcian ammonitico rosso facies from the South Iberian Paleomargin (Betic Cordillera, southern Spain): paleoenvironmental reconstruction. Facies 61, 22 (2015). https://doi.org/10.1007/s10347-015-0447-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10347-015-0447-3

Keywords

Navigation