Skip to main content

Advertisement

Log in

Landslide susceptibility mapping on the islands of Vulcano and Lipari (Aeolian Archipelago, Italy), using a multi-classification approach on conditioning factors and a modified GIS matrix method for areas lacking in a landslide inventory

  • Original Paper
  • Published:
Landslides Aims and scope Submit manuscript

Abstract

In areas prone to landslides, the identification of potentially unstable zones has a decisive impact on the risk assessment and development of mitigation plans. Active volcanic islands are particularly prone to instability phenomena as they are always in the early stage of dynamic unrest. A historical example of slope instability is the landslide which occurred in 1988 along the northwestern flank of La Fossa Cone on the island of Vulcano (Aeolian Archipelago). Based on this past activity, a susceptibility assessment using the bivariate technique of the GIS matrix method (GMM) was carried out on the islands of Lipari and Vulcano. Nevertheless, this case is congruent with those where a part of the surface was not assigned to stable or unstable areas, since a comprehensive inventory was only available for the island of Lipari. Some of the implemented steps of the susceptibility matrix method were modified to enable the model developed in the Lipari area to be applied to both islands. Considering the important role that the classification of conditioning factors plays in susceptibility analysis, the degree of association with landslide spatial distribution for the multiple classifications of each factor was assessed. Furthermore, an innovative clustering approach based on text and data mining techniques (self-organizing map neural network) was applied and compared with a heuristic classification of the categorical variable of lithology units. In addition to the extensive contingency analysis, up to 14 factor combinations were submitted to the GMM, validated and compared so as to select the one that best explains the susceptibility zoning. The effects of these incorporated processes in the previous phase of classification were discussed and preliminary susceptibility map was generated for both islands. After the validation of the susceptibility assessment, it is shown that the highest classes (High and Very High) matched 76.9% (relative accuracy) of the test inventory, while the lower susceptibility classes (Very Low and Low) resulted in a degree of fit of 14.39% (relative error).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abdulwahid WM, Pradhan B (2017) Landslide vulnerability and risk assessment for multi-hazard scenarios using airborne laser scanning data (LiDAR). Landslides 14(3):1057–1076. https://doi.org/10.1007/s10346-016-0744-0

    Article  Google Scholar 

  • Aleotti P, Chowdhury R (1999) Landslide hazard assessment: summary review and new perspectives. Bull Eng Geol Env 58(1):21–44

    Article  Google Scholar 

  • Ayalew L, Yamagishi H (2005) The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology 65(1):15–31. https://doi.org/10.1016/j.geomorph.2004.06.010

    Article  Google Scholar 

  • Barberi F, Neri G, Valenza M, Villari L (1991) 1987-1990 unrest at Vulcano. Acta Vulcanol 1:95–106

    Google Scholar 

  • Bonforte A, Guglielmino F (2008) Transpressive strain on the Lipari–Vulcano volcanic complex and dynamics of the “La Fossa” cone (Aeolian Islands, Sicily) revealed by GPS surveys on a dense network. Tectonophysics 457(1):64–70. https://doi.org/10.1016/j.tecto.2008.05.016

    Article  Google Scholar 

  • Bourenane H, Bouhadad Y, Guettouche MS, Braham M (2015) GIS-based landslide susceptibility zonation using bivariate statistical and expert approaches in the city of Constantine (Northeast Algeria). Bull Eng Geol Environ 74(2):337–355

    Article  Google Scholar 

  • Chacón J, Irigaray C, Fernandez T, El Hamdouni R (2006) Engineering geology maps: landslides and geographical information systems. Bull Eng Geol Environ 65(4):341–411. https://doi.org/10.1007/s10064-006-0064-z

    Article  Google Scholar 

  • Continisio R, Ferrucci F, Gaudiosi G, Lo Bascio D, Ventura G (1997) Malta escarpment and Mt. Etna: early stages of an asymmetric rifting process? Evidences from geophysical and geological data. Acta Vulcanol 9:39–47

    Google Scholar 

  • D’Aranno PJV, Marsella M, Scifoni S, Scutti M, Sonnessa A, Bonano M (2015) Advanced DInSAR analysis for building damage assessment in large urban areas: an application to the city of Roma, Italy. Dissertation, Proceedings of SPIE - The International Society for Optical Engineering 9642. doi https://doi.org/10.1117/12.2194808

  • De Astis G, Ventura G, Vilardo G (2003) Geodynamic significance of the Aeolian volcanism (southern Tyrrhenian Sea, Italy) in light of structural, seismological, and geochemical data. Tectonics 22(4). doi https://doi.org/10.1029/2003TC001506

  • De Astis G, Dellino P, La Volpe L, Lucchi F, Tranne CA (2006) Geological map of the island of Vulcano (Aeolian Islands). University of Bari, University of Bologna and INGV. L.A.C, Firenze

    Google Scholar 

  • De Astis G, Lucchi F, Dellino P, La Volpe L, Tranne CA, Frezzotti ML, Peccerillo A (2013) Chapter 11 Geology, volcanic history and petrology of Vulcano (central Aeolian Archipelago). In: Lucchi F, Peccerillo A, Keller J, Tranne CA, Rossi PL (eds) The Aeolian Islands volcanoes, Memoirs 37. Geological Society, London, pp 281–349. https://doi.org/10.1144/m37.11

    Chapter  Google Scholar 

  • DeGraff J, Romesburg C (1980) Regional landslide susceptibility assessment for wildland management: a matrix approach. In: Coats CR, Vitek J (eds) Thresholds in geomorphology, chapter 19. Allen and Unwin, London, pp 401–414

    Google Scholar 

  • Ermini L, Catani F, Casagli N (2005) Artificial neural networks applied to landslide susceptibility assessment. Geomorphology 66(1):327–343. https://doi.org/10.1016/j.geomorph.2004.09.025

    Article  Google Scholar 

  • ESRI (2018) About ArcGIS The mapping and analytics platform. https://www.esri.com/en-us/arcgis/about-arcgis/overview. Accessed 1 Oct 2016

  • Fernández T, Irigaray C, El Hamdouni R, Chacón J (2003) Methodology for landslide susceptibility mapping by means of a GIS. Application to the contraviesa area (Granada, Spain). Nat Hazards 30(3):297–308. https://doi.org/10.1023/B%3ANHAZ.0000007092.51910.3f

    Article  Google Scholar 

  • Forni F, Lucchi F, Peccerillo A, Tranne CA, Rossi PL, Frezzotti ML (2013) Chapter 10 stratigraphy and geological evolution of the Lipari volcanic complex (central Aeolian archipelago). In: Lucchi F, Peccerillo A, Keller J, Tranne CA, Rossi PL (eds) The Aeolian Islands volcanoes, Memoir 37. Geological, Society, London, pp 213–279. https://doi.org/10.1144/m37.10

    Chapter  Google Scholar 

  • Frazzetta G, Lanzafame G, Villari L (1982) Deformazioni e tettonica attiva a Liapri e Vulcano (Eolie). Mem Soc Geol It 24:293–297

    Google Scholar 

  • Goodchild MF (1986) Spatial autocorrelation. Catmog 47. Geo Books, Norwich, p 56

    Google Scholar 

  • Gorsevski PV, Brown MK, Panter K, Onasch CM, Simic A, Snyder J (2016) Landslide detection and susceptibility mapping using LiDAR and an artificial neural network approach: a case study in the Cuyahoga Valley National Park, Ohio. Landslides 13(3):467–484. https://doi.org/10.1007/s10346-015-0587-0

    Article  Google Scholar 

  • Guzzetti F, Carrara A, Cardinali M, Reichenbach P (1999) Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology 31(1–4):181–216. https://doi.org/10.1016/S0169-555X(99)00078-1

    Article  Google Scholar 

  • Irigaray C (1995) Movimientos de Ladera: Inventario, Análisis y Cartografía de la Susceptibilidad Mediante un Sistema de Información Geográfica. Aplicación a las Zonas de Colmenar (Málaga), Rute (Córdoba) y Montefrío (Granada). Dissertation, University of Granada, Spain, p. 578

  • Irigaray C, Fernandez T, El Hamdouni R, Chacon J (2007) Evaluation and validation of landslide-susceptibility maps obtained by a GIS matrix method: examples from the Betic Cordillera (southern Spain). Nat Hazards 41(1):61–79. https://doi.org/10.1007/s11069-006-9027-8

    Article  Google Scholar 

  • Jason GS, Bork E (2007) Characterization of diverse plant communities in Aspen Parkland rangeland using LIDAR data. Appl Veg Sci 10:407–416

    Article  Google Scholar 

  • Jenks GF (1967) The data model concept in statistical mapping. Int Yearb Cartogr 7:186–190

    Google Scholar 

  • Jiménez-Perálvarez JD, Irigaray C, El Hamdouni R, Chacón J (2011) Landslide-susceptibility mapping in a semi-arid mountain environment: an example from the southern slopes of Sierra Nevada (Granada, Spain). Bull Eng Geol Environ 70(2):265–277. https://doi.org/10.1007/s10064-010-0332-9

    Article  Google Scholar 

  • Kim S, McGaughey RJ, Andersen HE, Schreuder G (2009) Tree species differentiation using intensity data derived from leaf-on and leaf-off airborne laser scanner data. Remote Sens Environ 113(8):1575–1586. https://doi.org/10.1016/j.rse.2009.03.017

    Article  Google Scholar 

  • Kohonen T (1998) The self-organizing map. Neurocomputing 21(1):1–6. https://doi.org/10.1016/S0925-2312(98)00030-7

    Article  Google Scholar 

  • Kohonen T (2001) Self-organizing maps. In: Huang TS, Kohonen T, Schroeder MR, Manfred R (eds) Springer series in information sciences. Berlin Heidelberg, Sec 20:502. doi https://doi.org/10.1007/978-3-642-56927-2

  • Lacasse S, Nadim F (2009) Landslide risk assessment and mitigation strategy. In: Sassa K, Canuti P (eds) Landslides – disaster risk reduction, vol 3. Springer Berlin, Heidelberg, pp 31–61. https://doi.org/10.1007/978-3-540-69970-5_3

    Chapter  Google Scholar 

  • Lanzafame G, Bousquet JC (1997) The Maltese escarpment and its extension from Mt. Etna to the Aeolian Islands (Sicily): importance and evolution of a lithosphere discontinuity. Acta Vulcanol 9:113–120

    Google Scholar 

  • Locardi E, Nappi G (1979) Tettonica e vulcanismo recente nell’isola di Lipari (implicazioni geodinamiche). Boll Soc Geol It 98:447–456

    Google Scholar 

  • Lucchi F (2013) Chapter 5 Stratigraphic methodology for the geological mapping of volcanic areas: insights from the Aeolian Archipelago (southern Italy). In: Lucchi F, Peccerillo A, Keller J, Tranne CA, Rossi PL (eds) The Aeolian Islands volcanoes, Memoir 37. Geological Society, London, pp 37–53. https://doi.org/10.1144/m37.5

    Chapter  Google Scholar 

  • Malamud BD, Turcotte DL, Guzzetti F, Reichenbach P (2004) Landslide inventories and their statistical properties. Earth Surf Proc Land 29(6):687–711. https://doi.org/10.1002/esp.1064

    Article  Google Scholar 

  • Manning CD, Schütze H (1999) Foundations of statistical natural language processing, Massachusetts Institute of Technology. The MIT Press, Cambridge

  • Marsella MA, Scifoni S, Coltelli M, Proietti C (2011) Quantitative analysis of the 1981 and 2001 Etna flank eruptions: a contribution for future hazard evaluation and mitigation. Ann Geophys 54(5):492–498. https://doi.org/10.4401/ag-5334

    Article  Google Scholar 

  • Marsella M., Salino A., Scifoni S., Sonnessa A., Tommasi P. (2013) Stability Conditions and Evaluation of the Runout of a Potential Landslide at the Northern Flank of La Fossa Active Volcano, Italy. In: Margottini C., Canuti P., Sassa K. (eds) Landslide Science and Practice. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31310-3_41

  • Marsella M, D’Aranno PJV, Scifoni S, Sonnessa A, Corsetti M (2015a) Terrestrial laser scanning survey in support of unstable slopes analysis: the case of Vulcano Island (Italy). Nat Hazards 78(1):443–459. https://doi.org/10.1007/s11069-015-1729-3

    Article  Google Scholar 

  • Marsella MD, Aranno PJV, Scifoni S, Sonnessa A, Corsetti M (2015b) Terrestrial laser scanning survey in support of unstable slopes analysis: the case of Vulcano Island (Italy). Nat Hazards 78:443–459. https://doi.org/10.1007/s11069-015-1729-3

    Article  Google Scholar 

  • Mazzuoli R, Tortorici L, Ventura G (1995) Oblique rifting in Salina, Lipari and Vulcano Islands (Aeolian Islands, southern Tyrrhenian Sea, Italy). Terra Nova 7:444–452

    Article  Google Scholar 

  • McCulloch WS, Pitts W (1943) A logical calculus of the ideas immanent in nervous activity. Bull Math Biophys 5(4):115–133. https://doi.org/10.1007/BF02478259

    Article  Google Scholar 

  • Melchiorre C, Matteucci M, Azzoni A, Zanchi A (2008) Artificial neural networks and cluster analysis in landslide susceptibility zonation. Geomorphology 94(3):379–400. https://doi.org/10.1016/j.geomorph.2006.10.035

    Article  Google Scholar 

  • Meten M, PrakashBhandary N, Yatabe R (2015) Effect of landslide factor combinations on the prediction accuracy of landslide susceptibility maps in the Blue Nile Gorge of Central Ethiopia. Geoenviron Disasters 2(1):9. https://doi.org/10.1186/s40677-015-0016-7

    Article  Google Scholar 

  • Morsdorf F, Mårell A, Koetz B, Cassagne N, Pimont F, Rigolot E, Allgöwer B (2010) Discrimination of vegetation strata in a multi-layered Mediterranean forest ecosystem using height and intensity information derived from airborne laser scanning. Remote Sens Environ 114(7):1403–1415. https://doi.org/10.1016/j.rse.2010.01.023

    Article  Google Scholar 

  • Nedjah N, de Macedo Mourelle L (2007) Reconfigurable hardware for neural networks: binary versus stochastic. Neural Comput & Applic 16(3):249–255. https://doi.org/10.1007/s00521-007-0086-x

    Article  Google Scholar 

  • Palenzuela JA (2018) Landslide-susceptibility assessment in an area with similar geoenvironmental conditions to that of the analysis area- implementing computer tools. http://www.ugr.es/~jpalbae/Apps.html. Accessed 16 June 2015

  • Panizza M (1996) 3 Geomorphological hazard. In: Panizza M (ed) Developments in earth surface processes. Elsevier, Berlin, Vol. 4, pp 75–76. https://doi.org/10.1016/S0928-2025(96)80020-4

  • Pavel M, Fannin RJ, Nelson JD (2008) Replication of a terrain stability mapping using an artificial neural network. Geomorphology 97(3):356–373. https://doi.org/10.1016/j.geomorph.2007.08.012

    Article  Google Scholar 

  • Pavel M, Nelson JD, Jonathan Fannin R (2011) An analysis of landslide susceptibility zonation using a subjective geomorphic mapping and existing landslides. Comput Geosci 37(4):554–566. https://doi.org/10.1016/j.cageo.2010.10.006

    Article  Google Scholar 

  • Protodyakonov MM (1962) Mechanical properties and drillability of rocks. Dissertation, Symposium on Rock Mech., Minnessota. Univ 103–118

  • Rahmati O, Haghizadeh A, Pourghasemi HR, Noormohamadi F (2016) Gully erosion susceptibility mapping: the role of GIS-based bivariate statistical models and their comparison. Nat Hazards 82(2):1231–1258. https://doi.org/10.1007/s11069-016-2239-7

    Article  Google Scholar 

  • Scifoni S, Palenzuela Baena JA, Marsella M, Pepe S, Sansosti E, Solaro G, Tizzani P (2015) An integrated remote sensing approach for landslide susceptibly mapping at the volcanic islands of Vulcano and Lipari (Eolian Island, Italy). In Notarnicola C, Paloscia S, Pierdicca Nazzareno (eds) SPIE Proceedings Vol. 9642, SAR Image Analysis, Modeling, and Techniques XV, 96420H. 21-24 September 2015. Toulouse, France. https://doi.org/10.1117/12.2195060

  • Soeters R, van Westen CJ (1996) Slope instability recognition, analysis and zonation. In: Turner AK, Schuster RL (eds) Landslides investigation and mitigation. TRB Special Report 247. National Academy Press, Washington D.C, pp 129–177

    Google Scholar 

  • Song JH, Han SH, Yu K, Kim YL (2002) Assessing the possibility of land-cover classification using LIDAR intensity data. In Kalliany R, Leberl F, Fraundorfer F (eds) ISPRS Commission III Proceedings, Photogrammetric Computer Vision. 9-13 September 2002, Graz, Austria. 34(3B):259–262

  • Thouret JC (1999) Volcanic geomorphology—an overview. Earth Sci Rev 47(1):95–131. https://doi.org/10.1016/S0012-8252(99)00014-8

    Article  Google Scholar 

  • TIBCO (2017) TIBCO Statistica TM. https://www.tibco.com/es/products/tibco-statistica. Accessed 9 Nov 2016

  • Tinti S, Bortolucci E, Armigliato A (1999) Numerical simulation of the landslide-induced tsunami of 1988 on Vulcano Island, Italy. Bull Volcanol 61(1):121–137. https://doi.org/10.1007/s004450050

    Article  Google Scholar 

  • Tommasi P, Boldini D, Cignitti F, Graziani A, Lombardi A, Rotonda T (2007) Geomechanical analysis of the instability phenomena at Stromboli volcano. In: Eberhardt E, Stead D, Morrison T (eds) Dissertation, Proceedings of the 1st Canada-US Rock Mechanics Symposium - Rock Mechanics Meeting Society’s Challenges and Demands. 2:933–941

  • Tranne CA, Lucchi FC, Calanchi N, Lanzafame G, Rossi PL (2002) Geological map of the island of Lipari (Aeolian Islands). University of Bologna and INGV. L.A.C, Firenze

    Google Scholar 

  • Van Westen CJ, Rengers N, Soeters R (2003) Use of geomorphological information in indirect landslide susceptibility assessment. Nat Hazards 30(3):399–419. https://doi.org/10.1023/B:NHAZ.0000007097.42735.9e

    Article  Google Scholar 

  • Varnes DJ (1984) Landslide hazard zonation: a review of principles and practice. Nat Hazards 3:61. Commision on Landslides of IAEG, UNESCO. United Nations Educational, Scientific and Cultural Organization. Paris

  • Ventura G (1994) Tectonics, structural evolution and caldera formation on Vulcano Island (Aeolian Archipelago, southern Tyrrhenian Sea). J Volcanol Geotherm Res 60(3):207–224. https://doi.org/10.1016/0377-0273(94)90052-3

    Article  Google Scholar 

  • Ventura G (1995) Relationships between tectonics and volcanism in the central and eastern sectors of the Aeolian Islands. Dissertation, Proceedings of the National Congress. Gruppo Naz. Geofis. Terra Solida-Cons. Naz. delle Ric. Rome

  • Ventura G (2013) Chapter 2 Kinematics of the aeolian volcanism (southern tyrrhenian sea) from geophysical and geological data. Geol Soc Mem 37:3–11. https://doi.org/10.1144/m37.2

    Article  Google Scholar 

  • Ventura G, Vilardo G, Milano G, Pino NA (1999) Relationships among crustal structure, volcanism and strike–slip tectonics in the Lipari–Vulcano volcanic complex (Aeolian Islands, southern Tyrrhenian Sea, Italy). Phys Earth Planet Int 116(1):31–52. https://doi.org/10.1016/S0031-9201(99)00117-X

    Article  Google Scholar 

  • Wan S (2009) A spatial decision support system for extracting the core factors and thresholds for landslide susceptibility map. Eng Geol 108(3):237–251. https://doi.org/10.1016/j.enggeo.2009.06.014

    Article  Google Scholar 

  • Xiao H, Huang J, Ma Q, Wan J, Li L, Peng Q, Rezaeimalek S (2017) Experimental study on the soil mixture to promote vegetation for slope protection and landslide prevention. Landslides 14(1):287–297. https://doi.org/10.1007/s10346-015-0634-x

    Article  Google Scholar 

Download references

Funding

This work was supported by the DPC-INGV Project V3 on the island of Vulcano (http://sites.google.com/site/progettivulcanologici), founded by the Italian National Institute of Geophysics and Volcanology and by the Italian Civil Protection Department. The 2008 ALS DTM was provided by the Italian Ministry for Environment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Antonio Palenzuela Baena.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palenzuela Baena, J.A., Scifoni, S., Marsella, M. et al. Landslide susceptibility mapping on the islands of Vulcano and Lipari (Aeolian Archipelago, Italy), using a multi-classification approach on conditioning factors and a modified GIS matrix method for areas lacking in a landslide inventory. Landslides 16, 969–982 (2019). https://doi.org/10.1007/s10346-019-01148-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10346-019-01148-0

Keywords

Navigation