Skip to main content
Log in

Ozone affects shikimate pathway transcripts and monomeric lignin composition in European beech (Fagus sylvatica L.)

  • Original Paper
  • Published:
European Journal of Forest Research Aims and scope Submit manuscript

Abstract

The shikimate pathway plays a pivotal role in the formation of aromatic secondary compounds in plants. It finally leads to the formation of, for example, stilbenes, flavonoids, and lignins. Ozone effects on transcript levels of the shikimate pathway were studied in leaves of European beech saplings in the greenhouse (300 nl l−1, 8 h/day, 30 days), and in leaves of adult beech trees at the Kranzberg Forest free-air ozone fumigation site (ambient and twice ambient ozone levels) between June and October 2004. Quantitative real-time RT-PCR (qRT-PCR) with RNA isolated from beech saplings showed a strong induction of 3-deoxy-d-arabino-heptulosonate-7-phosphate synthase3 (DAHPS3), 3-dehydroquinate dehydratase/shikimate dehydrogenase (DHQD/SD), 5-enolpyruvylshikimate 3-phosphate synthase (EPSPS), and chorismate mutase (CM) starting at day seven from the onset of ozone treatment. In contrast, sun leaves of adult European beech showed only a weak elevation of shikimate pathway transcripts throughout the vegetation period studied. In addition, we examined lignin content and monomeric structure in leaves of European beech saplings from the greenhouse experiment. Leaves exhibiting highest amount of ozone-dependent lesions had the highest lignin content as determined according to Klason. Moreover, with increasing leaf damage, the syringyl (S) monomer content decreased, whereas the content of guaiacyl (G) and p-hydroxyphenyl (H) units increased. These results overall suggest that the composition of lignin is affected by ozone and is already regulated at early steps of the shikimate pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bahnweg G, Heller W, Stich S, Knappe K, Betz G, Heerdt C, Kehr RD, Ernst D, Langebartels C, Nunn AJ, Rothenburger J, Schubert R, Wallis P, Müller-Starck G, Werner H, Matyssek R, Sandermann H (2005) Beech leaf colonization by the endophyte Apiognomonia errabunda dramatically depends on light exposure and climatic conditions. Plant Biol 7:659–669

    Article  PubMed  CAS  Google Scholar 

  • Baillères H, Castan M, Monties B, Pollet B, Lapierre C (1997) Lignin structure in Buxus sempervirens reaction wood. Phytochemistry 44:35–39

    Article  Google Scholar 

  • Batz O, Logemann E, Reinold S, Hahlbrock K (1998) Extensive reprogramming of primary and secondary metabolism by fungal elicitor or infection in parsley cells. Biol Chem 379:1127–1135

    Article  PubMed  CAS  Google Scholar 

  • Baucher M, Monties B, Van Montagu M, Boerjan W (1998) Biosynthesis and genetic engineering of lignin. Crit Rev Plant Sci 17:125–197

    Article  CAS  Google Scholar 

  • Baumgarten M, Werner H, Häberle K–H, Emberson LD, Fabian P, Matyssek R (2000) Seasonal ozone response of mature beech trees at high altitude in the Bavarian forest (Germany) in comparison with young beech grown in the field and in phytotrons. Environ Pollut 109:431–442

    Google Scholar 

  • Bentley R, Haslam E (1990) The shikimate pathway—a metabolic tree with many branches. Crit Rev Biochem Mol Biol 25:307–384

    Article  PubMed  CAS  Google Scholar 

  • Bischoff M, Rösler J, Raesecke HR, Görlach J, Amrhein N, Schmid J (1996) Cloning of a cDNA encoding a 3-dehydroquinate synthase from a higher plant, and analysis of the organ-specific and elicitor-induced expression of the corresponding gene. Plant Mol Biol 31:69–76

    Article  PubMed  CAS  Google Scholar 

  • Bischoff M, Schaller A, Bieri F, Kessler F, Amrhein N, Schmid J (2001) Molecular characterization of tomato 3-dehydroquinate dehydratase-shikimate:NADPH oxidoreductase. Plant Physiol 125:1891–1900

    Article  PubMed  CAS  Google Scholar 

  • Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol Plant Physiol 54:519–546

    Article  CAS  Google Scholar 

  • Boerner REJ, Rebbeck J (1995) Decomposition and nitrogen release from leaves of three hard wood species grown under elevated O3 and/or CO2. Plant Soil 54:149–157

    Article  Google Scholar 

  • Bonello P, Heller W, Sandermann H (1993) Ozone effects on root-disease susceptibility and defence responses in mycorrhizal and non-mycorrhizal Scots pine (Pinus sylvestris L.). New Phytol 123:653–663

    Article  Google Scholar 

  • Booker FL, Anttonen S, Heagle AS (1996) Catechin, proanthocyanidin and lignin contents of loblolly pine (Pinus taeda) needles after chronic exposure to ozone. New Phytol 132:483–492

    Article  CAS  Google Scholar 

  • Boudet AM, Hawkins S, Cabané M, Ernst D, Galliano H, Heller W, Lange M, Sandermann H, Lapierre C (1995a) Development and stress lignification. In: Sandermann H, Bonnet-Masimbert M (eds) EUROSILVA: contribution to Forest Tree Physiology. INRA, Paris, pp 13–34

    Google Scholar 

  • Boudet AM, Lapierre C, Grima-Pettenati J (1995b) Biochemistry and molecular biology of lignification. New Phytol 129:203–236

    Article  CAS  Google Scholar 

  • Broadmeadow M (1998) Ozone and forest trees. New Phytol 139:123–125

    Article  CAS  Google Scholar 

  • Cabané M, Pireaux J-C, Leger E, Weber E, Dizengremel P, Pollet B, Lapierre C (2004) Condensed lignins are synthesized in poplar leaves exposed to ozone. Plant Physiol 134:586–594

    Article  PubMed  CAS  Google Scholar 

  • Dence CW (1992) The determination of lignin. In: Lin SY, Dence CW (eds) Methods in lignin chemistry. Springer, Heidelberg, pp 33–61

    Google Scholar 

  • Dyer WE, Henstrand JM, Handa AK, Herrmann KM (1989) Wounding induces the first enzyme of the shikimate pathway in Solanaceae. Proc Natl Acad Sci USA 86:7370–7373

    Article  PubMed  CAS  Google Scholar 

  • Eckey-Kaltenbach H, Ernst D, Heller W, Sandermann H (1994) Biochemical plant responses to ozone: IV. Cross-induction of defensive pathways in parsley (Petroselinum crispum L.) plants. Plant Physiol 104:67–74

    PubMed  CAS  Google Scholar 

  • Galliano H, Heller W, Sandermann H (1993a) Ozone induction and purification of spruce cinnamyl alcohol dehydrogenase. Phytochemistry 32:557–563

    Article  CAS  Google Scholar 

  • Galliano H, Cabané M, Eckerskorn C, Lottspeich F, Sandermann H, Ernst D (1993b) Molecular cloning, sequence analysis and elicitor-/ozone-induced accumulation of cinnamyl alcohol dehydrogenase from Norway spruce (Picea abies L.). Plant Mol Biol 23:145–156

    Article  PubMed  CAS  Google Scholar 

  • Görlach J, Raesecke HR, Rentsch D, Regenass M, Roy P, Zala M, Keel C, Boller T, Amrhein N, Schmid J (1995) Temporally distinct accumulation of transcripts encoding enzymes of the prechorismate pathway in elicitor treated, cultured tomato cells. Proc Natl Acad Sci USA 92:3166–3170

    Article  PubMed  Google Scholar 

  • Gupta P, Duplessis S, White H, Karnosky DF, Martin F, Podila GK (2005) Gene expression patterns of trembling aspen trees following long-term exposure to interacting elevated CO2 and tropospheric O3. New Phytol 167:129–142

    Article  PubMed  CAS  Google Scholar 

  • Henstrand JM, McCue KF, Brink K, Handa AK, Herrmann KM, Conn EE (1992) Light and fungal elicitor induce 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase mRNA in suspension cultured cells of parsley (Petroselinum crispum L.). Plant Physiol 98:761–763

    Article  PubMed  CAS  Google Scholar 

  • Herrmann KM, Weaver LM (1999) The shikimate pathway. Annu Rev Plant Physiol Plant Mol Biol 50:473–503

    Article  PubMed  CAS  Google Scholar 

  • Janzik I, Preiskowski S, Kneifel H (2005) Ozone has dramatic effects on the regulation of the prechorismate pathway in tobacco (Nicotiana tabacum L. cv. Bel W3). Planta 223:20–27

    Article  PubMed  CAS  Google Scholar 

  • Jehnes S, Betz G, Bahnweg G, Haberer K, Sandermann H, Rennenberg H (2007) Injury amplification reactions and tree internal signalling under ozone exposure in European beech (Fagus sylvatica) trees. Plant Biol 9:253–264

    Article  PubMed  CAS  Google Scholar 

  • Joseleau J-P, Imai T, Kuroda K, Ruel K (2004) Detection in situ and characterization of lignin in the G-layer of tension wood fibres of Populus deltoides. Planta 219:338–345

    Article  PubMed  CAS  Google Scholar 

  • Kangasjärvi J, Talvinen J, Utriainen M, Karjalainen R (1994) Plant defence systems induced by ozone. Plant Cell Environ 17:783–794

    Google Scholar 

  • Keith B, Dong X, Ausubel F, Fink GR (1991) Differential induction of 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase genes in Arabidopsis thaliana by wounding and pathogenic attack. Proc Natl Acad Sci USA 88:8821–8825

    Article  PubMed  CAS  Google Scholar 

  • Kiefer E, Heller W, Ernst D (2000) A simple and efficient protocol for isolation of functional RNA from plant tissues rich in secondary metabolites. Plant Mol Biol Rep 18:33–39

    Article  CAS  Google Scholar 

  • Koch JR, Scherzer AJ, Eshita SM, Davis KR (1998) Ozone sensitivity in hybrid poplar is correlated with a lack of defense-gene activation. Plant Physiol 118:1243–1252

    Article  CAS  Google Scholar 

  • Lange BM, Lapierre C, Sandermann H (1995) Elicitor-induced spruce stress lignin: structural similarity to early developmental lignins. Plant Physiol 108:1277–1287

    PubMed  CAS  Google Scholar 

  • Langebartels C, Schraudner M, Heller W, Ernst D, Sandermann H (2002) Oxidative stress and defense reactions in plants exposed to air pollutants and UV-B radiation. In: Inzé D, Van Montagu M (eds) Oxidative stress in plants, Taylor & Francis, London, pp 105–135

  • Lapierre C, Pollet B, Petit-Conil M, Toval G, Romero J, Pilate G, Leplé J-C, Boerjan W, Ferret V, De Nadai V, Jouanin L (1999) Structural alterations of lignins in transgenic poplars with depressed cinnamyl alcohol dehydrogenase or caffeic acid O-methyltransferase activity have an opposite impact on the efficiency of industrial Kraft pulping. Plant Physiol 119:153–164

    Article  PubMed  CAS  Google Scholar 

  • Li P, Mane SP, Sioson AA, Robinet CV, Heath LS, Bohnert HJ, Grene R (2006) Effects of chronic ozone exposure on gene expression in Arabidopsis thaliana ecotypes and in Thellungiella halophila. Plant Cell Environ 29:854–868

    Article  PubMed  CAS  Google Scholar 

  • Maier-Maercker U (1999) Predisposition of trees to drought stress by ozone. Tree Physiol 19:71–78

    PubMed  CAS  Google Scholar 

  • Matyssek R, Schnyder H, Elstner E-F, Munch J-C, Pretzsch H, Sandermann H (2002) Growth and parasite defence in plants; the balance between resource sequestration and retention: in lieu of a guest editorial. Plant Biol 4:133–136

    Article  Google Scholar 

  • Matyssek R, Wieser G, Nunn AJ, Kozovits AR, Reiter IM, Heerdt C, Winkler JB, Baumgarten M, Häberle K-H, Grams TEE, Werner H, Fabian P, Havranek WM (2004) Comparison between AOT40 and ozone uptake in forest trees of different species, age and site conditions. Atmos Environ 38:2271–2281

    Article  CAS  Google Scholar 

  • Matyssek R, Agerer R, Ernst D, Munch J-C, Oßwald W, Pretzsch H, Priesack E, Schnyder H, Treutter D (2005) The plant’s capacity in regulating resource demand. Plant Biol 7:560–580

    Article  PubMed  CAS  Google Scholar 

  • McCue KF, Conn EE (1989) Induction of 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase activity by fungal elicitor in cultures of Petroselinum crispum. Proc Natl Acad Sci USA 86:7374–7377

    Article  PubMed  CAS  Google Scholar 

  • Miyazaki S, Fredricksen M, Hollis KC, Poroyko V, Shepley D, Galbraith DW, Long SP, Bohnert HJ (2004) Transcript expression profiles of Arabidopsis thaliana grown under controlled conditions and open-air elevated concentrations of CO2 and of O3. Field Crops Res 90:47–59

    Article  Google Scholar 

  • Muday GK, Herrmann KM (1992) Wounding induces one of two isoenzymes of 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase in Solanum tuberosum. Plant Physiol 98:496–500

    Article  PubMed  CAS  Google Scholar 

  • Oksanen E, Riikonen J, Kaakinen S, Holopainen T, Vapaavuor E (2005) Structural characteristics and chemical composition of birch (Betula pendula) leaves are modified by increasing CO2 and ozone. Global Change Biol 11:732–748

    Article  Google Scholar 

  • Olbrich M, Betz G, Gerstner E, Langebartels C, Sandermann H, Ernst D (2005) Transcriptome analysis of ozone-responsive genes in leaves of European beech (Fagus sylvatica L.). Plant Biol 7:670–676

    Article  PubMed  CAS  Google Scholar 

  • Pretzsch H, Kahn M, Grote R (1998) The mixed spruce-beech forest stands of the “Sonderforschungsbereich” “Growth or Parasite Defence?” in the forest district Kranzberger Forst. Forstw Cbl 117:241–257

    Article  Google Scholar 

  • Sandermann H (1996) Ozone and plant health. Annu Rev Phytopathol 34:347–366

    Article  PubMed  CAS  Google Scholar 

  • Sandermann H, Ernst D, Heller W, Langebartels C (1998) Ozone: an abiotic elicitor of plant defence reactions. Trends Plant Sci 3:47–50

    Article  Google Scholar 

  • Sharma YK, Davis KR (1994) Ozone-induced expression of stress-related genes in Arabidopsis thaliana. Plant Physiol 105:1089–1096

    PubMed  CAS  Google Scholar 

  • Tuomainen J, Pellinen R, Roy S, Kiiskinen M, Eloranta T, Karjalainen R, Kangasjärvi J (1996) Ozone affects birch (Betula pendula Roth) phenylpropanoid, polyamine and active oxygen detoxifying pathways at biochemical and gene expression level. J Plant Physiol 148:179–188

    CAS  Google Scholar 

  • Vollenweider P, Ottiger M, Günthardt-Goerg MS (2003) Validation of ozone symptoms in natural vegeation using microscopical methods. Environ Pollut 124:101–118

    Article  PubMed  CAS  Google Scholar 

  • Walter MH (1992) Regulation of lignification in defense. In: Boller T, Moing F (eds) Advances in plant gene research, vol 8. Genes involved in plant defense. Springer, Wien, pp 327–352

  • Werner H, Fabian P (2002) Free-air fumigation on mature trees: a novel system for controlled ozone enrichment in grown-up beech and spruce canopies. Environ Sci Pollut Res 9:117–121

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to the staff of the Kranzberg Forest station for their excellent scientific and technical assistance. We wish to thank the staff of the Helmholtz Zentrum München Department of Environmental Engineering for their excellent technical support during the greenhouse experiments. We also sincerely acknowledge the technical assistance of Laurent Cézard (INRA) and of Frédéric Legée (AgroParisTech) for the thioacidolysis and Klason determinations. This research was part of a project funded by the Deutsche Forschungsgemeinschaft under the contract number SFB 607.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dieter Ernst.

Additional information

Communicated by A. Roloff.

This article belongs to the special issue “Growth and defense of Norway spruce and European beech in pure and mixed stands”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Betz, G.A., Knappe, C., Lapierre, C. et al. Ozone affects shikimate pathway transcripts and monomeric lignin composition in European beech (Fagus sylvatica L.). Eur J Forest Res 128, 109–116 (2009). https://doi.org/10.1007/s10342-008-0216-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10342-008-0216-8

Keywords

Navigation