Skip to main content
Log in

Being seaward-handed: a computational model of the acquisition of language-specific spatial references

  • Research Reports
  • Published:
Cognitive Processing Aims and scope Submit manuscript

Abstract

Empirical findings of cross-linguistic studies reveal three different frames of spatial reference: intrinsic, relative, and absolute. Of special interest are relative and absolute systems because they have antagonistic logical implications concerning the dependence on standpoint and orientation of the speaker/hearer. On the background of these findings it becomes crucial to show how an agent can form such language-specific spatial representations. In this paper, the system Locator is introduced as a model of concept formation in the spatial domain. It is assumed that an agent creates necessary discriminative features in processes of self-organization and selection and cannot just discover or “find” them in its environment. A number of simulations show that agents successfully create concepts of either a relative system (German) or an absolute system (Marquesan), relying solely on multimodal input (visual and linguistic).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. Locator is based on the simulation system Lokutor which was developed by Jan Torsten Milde at Bielefeld University (Milde 2000).

  2. If a language noticeably prefers and dominantly uses one of these three systems in a certain domain of spatial reference, speakers of this language will use an equal—congruent or isomorphic—coding system to memorize spatial configurations or draw conclusions from them while solving non-linguistic problems. [Author’s translation]

  3. I am grateful to Gabriele Cablitz, Max-Planck Institute of Psycholinguistics, Nijmegen, for supplying me with information on and examples of Marquesan. For further information on Marquesan see Cablitz (2002a, 2002b).

  4. The notion “pixel” is somewhat misleading for a 3D representation. As described above, each “pixel” is a 4D vector.

  5. In this kind of simulation the prerequisite of working with autonomous agents is given up because some interesting inside information can be gained from this kind of experiment.

  6. In the following, two different fonts are used for relations and concepts.

  7. Apart from the concepts, which can be seen as a history of experiences and thus realize some kind of memory.

References

  • Armstrong SL, Gleitman LR, Gleitman H (1983) What some concepts might not be. Cognition 13:263–308

    Article  CAS  PubMed  Google Scholar 

  • Bowerman M, Choi S (2001) Shaping meanings for language: universal and language-specific in the acquisition of spatial semantic categories. In: Bowerman M, Levinson SC (eds) Language acquisition and conceptual development. Cambridge University Press, Cambridge, pp 475–511

  • Bowerman M, Levinson SC (eds) (2001) Language acquisition and conceptual development. Cambridge University Press, Cambridge

  • Bruner J, Goodnow J, Austin G (1956) A study of thinking. Transaction Publishers, Somerset, New Jersey

  • Cablitz G (2002a) Marquesan—a grammar of space. Doctoral Diss, University of Kiel

  • Cablitz G (2002b) The acquisition of an absolute system: learning to talk about SPACE in Marquesan. In: Proc 31st SCLR Forum: Space in Language—Location, Motion, Path, and Manner, pp 40–49

  • Choi S, Bowerman M (1991) Learning to express motion events in English and Korean: the influence of language-specific lexicalization patterns. Cognition 41:83–121

    Article  CAS  PubMed  Google Scholar 

  • Franklin S, Graesser A (1996) Is it an agent, or just a program? A taxonomy for autonomous agents. In: Müller JP, Woolridge MJ, Jennings NR (eds) Intelligent agents III. Agent theories, architectures, and languages. Springer, Berlin Heidelberg New York, pp 21–35

  • Gapp K-P (1995) An empirically validated model for computing spatial relations. In: Wachmuth I, Rollinger C-R, Brauer W (eds) Proc 15th Annu German Conf on Artificial Intelligence, Kl-95: Advances in Artificial Intelligence, Springer, Berlin Heidelberg New York, pp 245–256

  • Gumperz JJ, Levinson SC (eds) (1996) Rethinking linguistic relativity. Cambridge University Press, Cambridge

  • Herrmann T, Schweizer K (1998) Sprechen über Raum—Sprachliches Lokalisieren und seine kognitiven Grundlagen. Hans Huber, Bern

  • Howard IP (1982) Human visual orientation. Wiley, Chichester

  • Jackendoff R (1990) Semantic structures. MIT Press, Cambridge, Massachusetts

  • Jones SS, Smith LB (1993) The place of perception in children’s concepts. Cog Dev 8:113–139

    Google Scholar 

  • Levinson SC (1996) Frames of reference and Molyneux’s question: crosslinguistic evidence. In: Bloom P, Peterson MA, Nadel L (eds) Language and space. MIT Press, Cambridge, Massachusetts, pp 109–169

  • Levinson SC (1997) From outer to inner space: linguistic categories and non-linguistic thinking. In: Nuyts J, Pederson E (eds) Language and conceptualization. MIT Press, Cambridge, Massachusetts, pp 13–45

  • Levinson SC (2001) Covariation between spatial language and cognition, and its implications for language learning. In: Bowerman M, Levinson SC (eds) Language acquisition and conceptual development. Cambridge University Press, Cambridge, pp 566–588

  • Lucy JA (1992) Grammatical categories and cognition: a case study of the linguistic relativity hypothesis. Cambridge University Press, Cambridge

    Google Scholar 

  • Madole KL, Oakes LM (1999) Making sense of infant categorization: stable processes and changing representations. Dev Rev 19:263–296

    Article  Google Scholar 

  • Margolis E, Laurence S (1999) Concepts: core readings. MIT Press, Cambridge, Massachusetts

  • Milde J-T (2000) Lokutor: towards a believable communicative agent. In: Rickel J, Johnson WL, Lester J (eds) Proc Worksh on Achieving Human-Like Behavior in Interactive Animated Agents, Barcelona

  • Miller GA, Johnson-Laird PN (1976) Language and perception. Cambridge University Press, Cambridge

  • Regier T (1996) The human semantic potential—spatial language and constrained connectionism. MIT Press, Cambridge, Massachusetts

  • Rehm M (2001a) Language guiding concept formation in artificial agents. In: Proc 18th Scandinavian Conference of Linguistics, Travaux de l’Institut de Linguistique de Lund, pp 241–253

  • Rehm M (2001b) Lokator—Multimodale Bedeutungskonstitution in situierten Agenten. Doctoral Diss, Bielefeld University, http://archiv.ub.uni-bielefeld.de/disshabi/2001/0076/

  • Rehm M (2002) Lokator—Multimodale Bedeutungskonstitution in situierten Agenten. In: Wagner D, Fiedler H, Günther O, Hölldobler S, Hotz G, Liggesmeyer P, Löhr K-P, Reischuk R (eds) Ausgezeichnete Informatikdissertationen 2001. Köllen und Druck, Bonn, pp 147–156

  • Roy D, Pentland A (1998) Multimodal adaptive interfaces. Tech Rep 438. MIT Media Lab, Cambridge, Massachusetts

  • Senft G (1994) Ein Vorschlag, wie man standardisiert Daten zum Thema ‘Sprache, Kognition und Konzepte des Raumes’ in verschiedenen Kulturen erheben kann. Linguist Ber 154:413–429

    Google Scholar 

  • Senft G (1995) Sprache, Kognition und Konzepte des Raumes in verschiedenen Kulturen. Kognitionswissenschaft 4:166–170

    Article  Google Scholar 

  • Senft G (1997) Introduction. In: Senft G (ed) Referring to space—studies in Austronesian and Papuan languages. Clarendon Press, Oxford, pp 1–38

  • Smith E, Medin D (1999) The exemplar view. In: Margolis E, Laurence S (eds) Concepts: core readings. MIT Press, Cambridge, Massachusetts, pp 207–221

  • Steels L (1996) Perceptually grounded meaning creation. In: Proc Int Conf on Multi-Agent Systems, AAAI Press, Menlo Park, California, pp 338–344

  • Steels L (1999) The talking heads experiment. Special pre-edition for LABORATORIUM Antwerpen

  • Steels L, Kaplan F (1999) Bootstrapping grounded word semantics. In: Briscoe T (ed) Linguistic evolution through language acquisition: formal and computational models. Cambridge University Press, Cambridge

  • Thelen E, Smith LB (1994) A dynamic systems approach to the development of cognition and action. MIT Press, Cambridge, Massachusetts

Download references

Acknowledgements

This work was supported by the German Research Foundation (DFG) in the framework of the graduate program Task-Oriented Communication (GK256). The dissertation thesis is online (in German): http://archiv.ub.uni-bielefeld.de/disshabi/2001/0076/. I would like to thank two anonymous reviewers for their valuable comments which improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Rehm.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rehm, M. Being seaward-handed: a computational model of the acquisition of language-specific spatial references. Cogn Process 5, 15–30 (2004). https://doi.org/10.1007/s10339-003-0007-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10339-003-0007-6

Keywords

Navigation