Skip to main content

Advertisement

Log in

Structural and biomechanical changes to dentin extracellular matrix following chemical removal of proteoglycans

  • Original Article
  • Published:
Odontology Aims and scope Submit manuscript

Abstract

Proteoglycans are biomacromolecules with significant biomineralization and structural roles in the dentin extracellular matrix. This study comprehensively assessed the mechanical properties and morphology of the dentin extracellular matrix following chemical removal of proteoglycans to elucidate the structural roles of proteoglycans in dentin. Dentin extracellular matrix was prepared from extracted teeth after complete tissue demineralization. Chemical removal of proteoglycans was carried-out using guanidine hydrochloride for up to 10 days. The removal of proteoglycans was determined by dimethylmethylene blue colorimetric assay and histological staining analyses using transmission electron microscopy and optical microscopy. The modulus of elasticity of dentin matrix was determined by a 3-point bending test method. Partial removal of proteoglycans induced significant modifications to the dentin matrix, particularly to type I collagen. Removal of proteoglycans significantly decreased the modulus of elasticity of dentin extracellular matrix (p < 0.0001). In conclusion, the subtle disruption of proteoglycans induces pronounced changes to the collagen network packing and the bulk modulus of elasticity of dentin matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bertassoni LE, Swain MV. The contribution of proteoglycans to the mechanical behavior of mineralized tissues. J Mech Behav Biomed Mater. 2014;38:91–104.

    Article  PubMed  Google Scholar 

  2. Imbeni V, Kruzicm JJ, Marshall GW, Marshall SJ, Ritchie RO. The dentin-enamel junction and the fracture of human teeth. Nat Mater. 2005;4:229–32.

    Article  PubMed  Google Scholar 

  3. Bertassoni LE, Orgel JP, Antipova O, Swain MV. The dentin organic matrix—limitations of restorative dentistry hidden on the nanometer scale. Acta Biomater. 2012;8:2419–33.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Dechichi P, Biffi JC, Moura CC, de Ameida AW. A model of the early mineralization process of mantle dentin. Micron. 2007;38:486–91.

    Article  PubMed  Google Scholar 

  5. Goldberg M, Ono M, Septier D, Bonnefoix M, Kilts TM, Bi Y, et al. Fibromodulin-deficient mice reveal dual functions for fibromodulin in regulating dental tissue and alveolar bone formation. Cells Tissues Organs. 2009;189:198–202.

    Article  PubMed  Google Scholar 

  6. Waddington RJ, Hall RC, Embery G, Lloyd DM. Changing profiles of proteoglycans in the transition of predentine to dentine. Matrix Biol. 2003;22:153–61.

    Article  PubMed  Google Scholar 

  7. Ho SP, Sulyanto RM, Marshall SJ, Marshall GW. The cementum-dentin junction also contains glycosaminoglycans and collagen fibrils. J Struct Biol. 2005;151:69–78.

    Article  PubMed  Google Scholar 

  8. Bourdon MA, Oldberg A, Pierschbacher M, Ruoslahti E. Molecular cloning and sequence analysis of a chondroitin sulfate proteoglycan cDNA. Proc Natl Acad Sci. 1985;82:1321–5.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Scott JE. Alcian blue. Now you see it, now you don’t. Eur J Oral Sci. 1996;104:2–9.

    Article  PubMed  Google Scholar 

  10. Vogel KG, Paulsson M, Heinegård D. Specific inhibition of type I and type II collagen fibrillogenesis by the small proteoglycan of tendon. Biochem J. 1984;223:587–97.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hedbom E, Heinegård D. Binding of fibromodulin and decorin to separate sites on fibrillar collagens. J Biol Chem. 1993;268:27307–12.

    PubMed  Google Scholar 

  12. Kobe B, Deisenhofer J. The leucine-rich repeat: a versatile binding motif. Trends Biochem Sci. 1994;19:415–21.

    Article  PubMed  Google Scholar 

  13. Schönherr E, Witsch-Prehm P, Harrach B, Robenek H, Rauterberg J, Kresse H. Interaction of biglycan with type I collagen. J Biol Chem. 1995;270:2776–83.

    Article  PubMed  Google Scholar 

  14. Septier D, Hall RC, Lloyd D, Embery G, Goldberg M. Quantitative immunohistochemical evidence of a functional gradient of chondroitin 4-sulphate/dermatan sulphate, developmentally regulated in the predentine of rat incisor. Histochem J. 1998;30:275–84.

    Article  PubMed  Google Scholar 

  15. Iozzo RV. Matrix proteoglycans: from molecular design to cellular function. Annu Rev Biochem. 1998;67:609–52.

    Article  PubMed  Google Scholar 

  16. Goldberg M, Septier D, Oldberg A, Young MF, Ameye LG. Fibromodulin-deficient mice display impaired collagen fibrillogenesis in predentin as well as altered dentin mineralization and enamel formation. J Histochem Cytochem. 2006;54:525–37.

    Article  PubMed  Google Scholar 

  17. Bedran-Russo AK, Pashley DH, Agee K, Drummond JL, Miescke KJ. Changes in stiffness of demineralized dentin following application of collagen crosslinkers. J Biomed Mater Res B Appl Biomater. 2008;86:330–34.

    Article  PubMed  Google Scholar 

  18. Mazzoni A, Pashley DH, Ruggeri A Jr, Vita F, Falconi M, Di Lenarda R, Breschi L. Adhesion to chondroitinase ABC treated dentin. J Biomed Mater Res B Appl Biomater. 2008;86:228–36.

    Article  PubMed  Google Scholar 

  19. Chandrasekhar S, Esterman MA, Hoffman HA. Microdetermination of proteoglycans and glycosaminoglycans in the presence of guanidine hydrochloride. Anal Biochem. 1987;161:103–08.

    Article  PubMed  Google Scholar 

  20. Barbosa I, Garcia S, Barbier-Chassefière V, Caruelle JP, Martelly I, Papy-García D. Improved and simple micro assay for sulfated glycosaminoglycans quantification in biological extracts and its use in skin and muscle tissue studies. Glycobiology. 2003;13:647–53.

    Article  PubMed  Google Scholar 

  21. Yang Y, Rupani A, Bagnaninchi P, Wimpenny I, Weightman A. Study of optical properties and proteoglycan content of tendons by polarization sensitive optical coherence tomography. J Biomed Opt. 2012;17:081417.

    Article  PubMed  Google Scholar 

  22. Bedran-Russo AK, Castellan CS, Shinohara MS, Hassan L, Antunes A. Characterization of biomodified dentin matrices for potential preventive and reparative therapies. Acta Biomater. 2011;7:1735–41.

    Article  PubMed  Google Scholar 

  23. Bedran-Russo AK, Pereira PN, Duarte WR, Okuyama K, Yamauchi M. Removal of dentin matrix proteoglycans by trypsin digestion and its effect on dentin bonding. J Biomed Mater Res B Appl Biomater. 2008;85:261–6.

    Article  PubMed  Google Scholar 

  24. Castellan CS, Pereira PN, Viana G, Chen SN, Pauli GF, Bedran-Russo AK. Solubility study of phytochemical cross-linking agents on dentin stiffness. J Dent. 2010;38:431–6.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Reddy GK, Enwemeka CS. A simplified method for the analysis of hydroxyproline in biological tissues. Clin Biochem. 1996;29:225–9.

    Article  PubMed  Google Scholar 

  26. Vogel KG, Peters JA. Histochemistry defines a proteoglycan-rich layer in bovine flexor tendon subjected to bending. J Musculoskelet Neuronal Interact. 2005;5:64–9.

    PubMed  Google Scholar 

  27. Mazzocca AD, McCarthy MB, Ledgard FA, Chowaniec DM, McKinnon WJ Jr, Delaronde S, et al. Histomorphologic changes of the long head of the biceps tendon in common shoulder pathologies. Arthroscopy. 2013;29:972–81.

    Article  PubMed  Google Scholar 

  28. Fisher MC, Li Y, Seghatoleslami MR, Dealy CN, Kosher RA. Heparan sulfate proteoglycans including syndecan-3 modulate BMP activity during limb cartilage differentiation. Matrix Biol. 2006;25:27–39.

    Article  PubMed  Google Scholar 

  29. Scott JE. Proteoglycan histochemistry a valuable tool for connective tissue biochemists. Coll Relat Res. 1985;5:541–75.

    Article  PubMed  Google Scholar 

  30. Rabau MY, Dayan D. Polarization microscopy of picrosirius red stained sections: a useful method for qualitative evaluation of intestinal wall collagen. Histol Histopathol. 1994;9:525–8.

    PubMed  Google Scholar 

  31. Yamauchi N, Nagaoka H, Yamauchi S, Teixeira FB, Miguez P, Yamauchi M. Immunohistological characterization of newly formed tissues after regenerative procedure in immature dog teeth. J Endod. 2011;37:1636–41.

    Article  PubMed  Google Scholar 

  32. Ribeiro JF, dos Anjos EH, Mello ML, de Campos Vidal B. Skin collagen fiber molecular order: a pattern of distributional fiber orientation as assessed by optical anisotropy and image analysis. PLoS One. 2013;8:e54724.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Dolber PC, Spach MS. Picrosirius red staining of cardiac muscle following phosphomolybdic acid treatment. Stain Technol. 1987;62:23–6.

    Article  PubMed  Google Scholar 

  34. Diaz Encarnacion MM, Griffin MD, Slezak JM, Bergstralh EJ, Stegall MD, Velosa JA, et al. Correlation of quantitative digital image analysis with the glomerular filtration rate in chronic allograft nephropathy. Am J Transplant. 2004;4:248–56.

    Article  PubMed  Google Scholar 

  35. Lattouf R, Younes R, Lutomski D, Naaman N, Godeau G, Senni K, et al. Picrosirius red staining: a useful tool to appraise collagen networks in normal and pathological tissues. J Histochem Cytochem. 2014;62:751–8.

    Article  PubMed  Google Scholar 

  36. Provenzano PP, Vanderby R Jr. Collagen fibril morphology and organization: implications for force transmission in ligament and tendon. Matrix Biol. 2006;25:71–84.

    Article  PubMed  Google Scholar 

  37. Zhang G, Ezura Y, Chervoneva I, Robinson PS, Beason DP, Carine ET, et al. Decorin regulates assembly of collagen fibrils and acquisition of biomechanical properties during tendon development. J Cell Biochem. 2006;98:1436–49.

    Article  PubMed  Google Scholar 

  38. Bertassoni LE, Stankoska K, Swain MV. Insights into the structure and composition of the peritubular dentin organic matrix and the lamina limitans. Micron. 2012;43:229–36.

    Article  PubMed  Google Scholar 

  39. Scott JE. Proteoglycan–fibrillar collagen interactions. Biochem J. 1988;252:313–23.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Breschi L, Gobbi P, Lopes M, Prati C, Falconi M, Teti G, Mazzotti G. Immunocytochemical analysis of dentin: a double-labeling technique. J Biomed Mater Res A. 2003;67:11–7.

    Article  PubMed  Google Scholar 

  41. Hsueh MF, Khabut A, Kjellström S, Önnerfjord P, Kraus VB. Elucidating the molecular composition of cartilage by proteomics. J Proteome Res. 2016;15:374–88.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Goldberg M, Takagi M. Dentine proteoglycans: composition, ultrastructure and functions. Histochem J. 1993;25:781–806.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The study was supported by the National Institute of Health—NIH/NIDCR (#DE021040) and CAPES Foundation-Brazil (#BEX 17764/12-2). The authors would like to thank Ariene Leme-Kraus for the support with the statistical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana K. Bedran-Russo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farina, A.P., Vidal, C.M.P., Cecchin, D. et al. Structural and biomechanical changes to dentin extracellular matrix following chemical removal of proteoglycans. Odontology 107, 316–323 (2019). https://doi.org/10.1007/s10266-018-00408-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10266-018-00408-0

Keywords

Navigation