Skip to main content

Advertisement

Log in

Oxidative stress levels are correlated with P15 and P16 gene promoter methylation in myelodysplastic syndrome patients

  • Original Article
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

Abstract

Oxidative stress and abnormal DNA methylation have been implicated in some types of cancer, namely in myelodysplastic syndromes (MDS). Since both mechanisms are observed in MDS patients, we analyzed the correlation of intracellular levels of peroxides, superoxide anion, and glutathione (GSH), as well as ratios of peroxides/GSH and superoxide/GSH, with the methylation status of P15 and P16 gene promoters in bone marrow leukocytes from MDS patients. Compared to controls, these patients had lower GSH content, higher peroxide levels, peroxides/GSH and superoxide/GSH ratios, as well as higher methylation frequency of P15 and P16 gene promoters. Moreover, patients with methylated P15 gene had higher oxidative stress levels than patients without methylation (peroxides: 460 ± 42 MIF vs 229 ± 25 MIF, p = 0.001; superoxide: 383 ± 48 MIF vs 243 ± 17 MIF, p = 0.022; peroxides/GSH: 2.50 ± 0.08 vs 1.04 ± 0.34, p < 0.001; superoxide/GSH: 1.76 ± 0.21 vs 1.31 ± 0.10, p = 0.007). Patients with methylated P16 and at least one methylated gene had higher peroxide levels as well as peroxides/GSH ratio than patients without methylation. Interestingly, oxidative stress levels allow the discrimination of patients without methylation from ones with methylated P15, methylated P16, or at least one methylated (P15 or P16) promoter. Taken together, these findings support the hypothesis that oxidative stress is correlated with P15 and P16 hypermethylation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007;39:44–84.

    Article  CAS  PubMed  Google Scholar 

  2. Hole PS, Darley RL, Tonks A. Do reactive oxygen species play a role in myeloid leukemias? Blood. 2011;117:5816–26.

    Article  CAS  PubMed  Google Scholar 

  3. Farquhar MJ, Bowen DT. Oxidative stress and the myelodysplastic syndromes. Int J Hematol. 2003;77:342–50.

    Article  CAS  PubMed  Google Scholar 

  4. Klaunig JE, Kamendulis LM, Hocevar BA. Oxidative stress and oxidative damage in carcinogenesis. Toxicol Pathol. 2010;38:96–109.

    Article  CAS  PubMed  Google Scholar 

  5. Jones DP. Radical free biology of oxidative stress. Am J Physiol Cell Physiol. 2008;295:C849–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O. Oxidative stress and antioxidant defense. World Allergy Organ J. 2012;5:9–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ghaffari S. Oxidative stress in the regulation of normal and neoplastic hematopoiesis. Antioxid Redox Signal. 2008;10:1923–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Klaunig JE, Kamendulis LM. The role of oxidative stress in carcinogenesis. Annu Rev Pharmacol Toxicol. 2004;44:239–67.

    Article  CAS  PubMed  Google Scholar 

  9. Das PM, Singal R. DNA methylation and cancer. J Clin Oncol. 2004;22:4632–42.

    Article  CAS  PubMed  Google Scholar 

  10. Taby R, Issa J-PJ. Cancer epigenetics. CA Cancer J Clin. 2010;60:376–92.

    Article  PubMed  Google Scholar 

  11. Galm O, Herman JG, Baylin SB. The fundamental role of epigenetics in hematopoietic malignancies. Blood Rev. 2006;20:1–13.

    Article  CAS  PubMed  Google Scholar 

  12. Esteller M. Epigenetics in cancer. N Engl J Med. 2008;358:1148–59.

    Article  CAS  PubMed  Google Scholar 

  13. Karlic H, Herrmann H, Varga F, et al. The role of epigenetics in the regulation of apoptosis in myelodysplastic syndromes and acute myeloid leukemia. Crit Rev Oncol Hematol. 2014;90:1–16.

    Article  PubMed  Google Scholar 

  14. Ziech D, Franco R, Pappa A, Panayiotidis MI. Reactive oxygen species (ROS) induced genetic and epigenetic alterations in human carcinogenesis. Mutat Res. 2011;711:167–73.

    Article  CAS  PubMed  Google Scholar 

  15. Donkena KV, Young CYF, Tindall DJ. Oxidative stress and DNA methylation in prostate cancer. Obstet Gynecol Int. 2010;2010:302051.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Cerda S, Weitzman SA. Influence of oxygen radical injury on DNA methylation. Mutat Res. 1997;386:141–52.

    Article  CAS  PubMed  Google Scholar 

  17. Franco R, Schoneveld O, Georgakilas AG, Panayiotidis MI. Oxidative stress, DNA methylation and carcinogenesis. Cancer Lett. 2008;266:6–11.

    Article  CAS  PubMed  Google Scholar 

  18. Shih AH, Levine RL. Molecular biology of myelodysplastic syndromes. Semin Oncol. 2011;38:613–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Adès L, Itzykson R, Fenaux P. Myelodysplastic syndromes. Lancet. 2014;383:2239–52.

    Article  PubMed  Google Scholar 

  20. Ghoti H, Amer J, Winder A, Rachmilewitz E, Fibach E. Oxidative stress in red blood cells, platelets and polymorphonuclear leukocytes from patients with myelodysplastic syndrome. Eur J Haematol. 2007;79:463–7.

    Article  PubMed  Google Scholar 

  21. Novotna B, Bagryantseva Y, Siskova M, Neuwirtova R. Oxidative DNA damage in bone marrow cells of patients with low risk myelodysplastic syndrome. Leuk Res. 2009;33:340–3.

    Article  CAS  PubMed  Google Scholar 

  22. Brunning R, Orazi A, Germing U, et al. Myelodysplastic syndromes/neoplasms. In: Swerdlow SH, Campo E, Harris NL, et al., editors. WHO classification of tumours of haematopoietic and lymphoid tissues. 4th ed. Lyon: IARC Press; 2008. p. 88–103.

    Google Scholar 

  23. Almeida S, Sarmento-Ribeiro AB, Januário C, Rego AC, Oliveira CR. Evidence of apoptosis and mitochondrial abnormalities in peripheral blood cells of Huntington’s disease patients. Biochem Biophys Res Commun. 2008;374:599–603.

    Article  CAS  PubMed  Google Scholar 

  24. Zielonka J, Vasquez Vivar J, Kalyanaraman B. Detection of 2 hydroxyethidium in cellular systems: a unique marker product of superoxide and hydroethidine. Nat Protoc. 2008;3:8–21.

    Article  CAS  PubMed  Google Scholar 

  25. O’Connor JE, Kimler BF, Morgan MC, Tempas KJ. A flow cytometric assay for intracellular nonprotein thiols using mercury orange. Cytometry. 1988;9:529–32.

    Article  PubMed  Google Scholar 

  26. Yeh KT, Chang JG, Lin TH, et al. Epigenetic changes of tumor suppressor genes, P15, P16, VHL and P53 in oral cancer. Oncol Rep. 2003;10:659–63.

    CAS  PubMed  Google Scholar 

  27. Nishida N, Arizumi T, Takita M, et al. Reactive oxygen species induce epigenetic instability through the formation of 8 hydroxydeoxyguanosine in human hepatocarcinogenesis. Dig Dis. 2013;31:459–66.

    Article  PubMed  Google Scholar 

  28. Patchsung M, Boonla C, Amnattrakul P, Dissayabutra T, Mutirangura A, Tosukhowong P. Long interspersed nuclear element 1 hypomethylation and oxidative stress: correlation and bladder cancer diagnostic potential. PLoS ONE. 2012;7:e37009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lim SO, Gu JM, Kim MS, et al. Epigenetic changes induced by reactive oxygen species in hepatocellular carcinoma: methylation of the E cadherin promoter. Gastroenterology. 2008;135:2128–40.

    Article  CAS  PubMed  Google Scholar 

  30. Min JY, Lim SO, Jung G. Downregulation of catalase by reactive oxygen species via hypermethylation of CpG island II on the catalase promoter. FEBS Lett. 2010;584:2427–32.

    Article  CAS  PubMed  Google Scholar 

  31. Quan X, Lim SO, Jung G. Reactive oxygen species downregulate catalase expression via methylation of a CpG Island in the Oct 1 promoter. FEBS Lett. 2011;585:3436–41.

    Article  CAS  PubMed  Google Scholar 

  32. Wongpaiboonwattana W, Tosukhowong P, Dissayabutra T, Mutirangura A, Boonla C. Oxidative stress induces hypomethylation of LINE 1 and hypermethylation of the RUNX3 promoter in a bladder cancer cell line. Asian Pacific J Cancer Prev. 2013;14:3773–8.

    Article  Google Scholar 

  33. Solomon PR, Munirajan AK, Tsuchida N, et al. Promoter hypermethylation analysis in myelodysplastic syndromes: diagnostic & prognostic implication. Indian J Med Res. 2008;127:52–7.

    CAS  PubMed  Google Scholar 

  34. Claus R, Lübbert M. Epigenetic targets in hematopoietic malignancies. Oncogene. 2003;22:6489–96.

    Article  CAS  PubMed  Google Scholar 

  35. Quesnel B, Guillerm G, Vereecque R, et al. Methylation of the p15(INK4b) gene in myelodysplastic syndromes is frequent and acquired during disease progression. Blood. 1998;91:2985–90.

    CAS  PubMed  Google Scholar 

  36. Tien HF, Tang JL, Tsay W, et al. Methylation of the p15INK4B gene in myelodysplastic syndrome: it can be detected early at diagnosis or during disease progression and is highly associated with leukaemic transformation. Br J Haematol. 2011;112:148–54.

    Article  Google Scholar 

  37. Aggerholm A, Holm MS, Guldberg P, Olesen LH, Hokland P. Promoter hypermethylation of p15INK4B, HIC1, CDH1, and ER is frequent in myelodysplastic syndrome and predicts poor prognosis in early stage patients. Eur J Haematol. 2006;76:23–32.

    Article  CAS  PubMed  Google Scholar 

  38. Saigo K, Takenokuchi M, Hiramatsu Y, et al. Oxidative stress levels in myelodysplastic syndrome patients: their relationship to serum ferritin and haemoglobin values. J Int Med Res. 2011;39:1941–5.

    Article  CAS  PubMed  Google Scholar 

  39. Peddie CM, Wolf CR, McLellan LI, Collins AR, Bowen DT. Oxidative DNA damage in CD34 + myelodysplastic cells is associated with intracellular redox changes and elevated plasma tumour necrosis factor alpha concentration. Br J Haematol. 1997;99:625–31.

    Article  CAS  PubMed  Google Scholar 

  40. Honda M, Yamada Y, Tomonaga M, Ichinose H, Kamihira S. Correlation of urinary 8-hydroxy-2′-deoxyguanosine (8-OHdG), a biomarker of oxidative DNA damage, and clinical features of hematological disorders: a pilot study. Leuk Res. 2000;24:461–8.

    Article  CAS  PubMed  Google Scholar 

  41. Soberanes S, Gonzalez A, Urich D, et al. Particulate matter air pollution induces hypermethylation of the p16 promoter via a mitochondrial ROS JNK DNMT1 pathway. Sci Rep. 2012;2:275.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Gonçalves AC, Alves R, Pires A, Jorge J, Mota-Vieira L, Nascimento-Costa JM, Sarmento-Ribeiro AB (2015) Chronic exposure to oxidative stress inducers influence methylation status in normal and neoplastic hematological cells. Rev Port Pneumol 21 (Esp Cong 1):18

  43. O’Hagan HM, Wang W, Sen S, et al. Oxidative damage targets complexes containing DNA methyltransferases, SIRT1, and polycomb members to promoter CpG islands. Cancer Cell. 2011;20:606–19.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Afanas’ev I. New nucleophilic mechanisms of ROS dependent epigenetic modifications: comparison of aging and cancer. Aging Dis. 2014;5:52–62.

    Article  PubMed  Google Scholar 

  45. Rang FJ, Boonstra J. Causes and consequences of age related changes in DNA methylation: a role for ROS? Biology (Basel). 2014;3:403–25.

    CAS  Google Scholar 

  46. Jankowska AM, Gondek LP, Szpurka H, Nearman ZP, Tiu RV, Maciejewski JP. Base excision repair dysfunction in a subgroup of patients with myelodysplastic syndrome. Leukemia. 2008;22:551–8.

    Article  CAS  PubMed  Google Scholar 

  47. Fenaux P, Rose C. Impact of iron overload in myelodysplastic syndromes. Blood Rev. 2009;23:S15–9.

    Article  CAS  PubMed  Google Scholar 

  48. Steensma DP, Gattermann N. When is iron overload deleterious, and when and how should iron chelation therapy be administered in myelodysplastic syndromes? Best Pract Res Clin Haematol. 2013;26:431–44.

    Article  CAS  PubMed  Google Scholar 

  49. Kikuchi S, Kobune M, Iyama S, et al. Prognostic significance of serum ferritin level at diagnosis in myelodysplastic syndrome. Int J Hematol. 2012;95:527–34.

    Article  CAS  PubMed  Google Scholar 

  50. Bystrom LM, Rivella S. Cancer cells with irons in the fire. Free Radic Biol Med. 2015;79C:337–42.

    Article  Google Scholar 

  51. Ghoti H, Fibach E, Merkel D, et al. Changes in parameters of oxidative stress and free iron biomarkers during treatment with deferasirox in iron-overloaded patients with myelodysplastic syndromes. Haematologica. 2010;95:1433–4.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Mufti GJ. Pathobiology, classification, and diagnosis of myelodysplastic syndrome. Best Pract Res Clin Haematol. 2004;17:543–57.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The present work was supported by CIMAGO—Center of Investigation on Environment, Genetics and Oncobiology, Faculty of Medicine, University of Coimbra, Portugal, and by center grant (to BioISI, Center Reference: UID/MULTI/04046/2013) from FCT/MCTES/PIDDAC, Portugal.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Bela Sarmento-Ribeiro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonçalves, A.C., Cortesão, E., Oliveiros, B. et al. Oxidative stress levels are correlated with P15 and P16 gene promoter methylation in myelodysplastic syndrome patients. Clin Exp Med 16, 333–343 (2016). https://doi.org/10.1007/s10238-015-0357-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-015-0357-2

Keywords

Navigation