Skip to main content

Advertisement

Log in

Involvement of bone-marrow-derived cells in kidney fibrosis

  • Review Article
  • Published:
Clinical and Experimental Nephrology Aims and scope Submit manuscript

Abstract

Cellular mechanisms have been proposed in the pathogenesis of fibrotic processes in the kidney. In this setting, cell sources underlying the generation of matrix-producing cells in diseased kidneys have been categorized as activated resident stromal cells (e.g., fibroblasts, pericytes), infiltrating bone-marrow-derived cells (e.g., fibrocytes, T cells, macrophages), and cells derived from epithelial–mesenchymal transition/endothelial–mesenchymal transition. Among these cell sources, accumulating evidence has shed light on the involvement of bone-marrow-derived cells, including monocytes/macrophages, and a circulating mesenchymal progenitor cell, fibrocyte, in the progression of fibrosis in kidney. Bone-marrow-derived cells positive for CD45 or CD34, and type 1 (pro)collagen dependent on the chemokine and renin–angiotensin systems migrate into diseased kidneys and enhance synthesis matrix protein, cytokines/chemokines, and profibrotic growth factors, which may promote and escalate chronic inflammatory processes and possible interaction with resident stromal cells, thereby perpetuating kidney fibrosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Strutz F, Zeisberg M. Renal fibroblasts and myofibroblasts in chronic kidney disease. J Am Soc Nephrol. 2006;17:2992–8.

    Article  CAS  PubMed  Google Scholar 

  2. Wynn TA. Cellular and molecular mechanisms of fibrosis. J Pathol. 2008;214:199–210.

    Article  CAS  PubMed  Google Scholar 

  3. Guarino M, Tosoni A, Nebuloni M. Direct contribution of epithelium to organ fibrosis: epithelial–mesenchymal transition. Hum Pathol. 2009;40:1365–76.

    Article  CAS  PubMed  Google Scholar 

  4. Vernon MA, Mylonas K, Hughes J. Macrophages and renal fibrosis. Semin Nephrol. 2010;30:302–7.

    Article  CAS  PubMed  Google Scholar 

  5. Tapmeier TT, Fearn A, Brown K, Chowdhury P, Sacks SH, Sheerin NS, Wong W. Pivotal role of CD4+ T cells in renal fibrosis following ureteric obstruction. Kidney Int. 2010;78:351–62.

    Article  CAS  PubMed  Google Scholar 

  6. Bucala R, Spiegel L, Chesney J, Hogan M, Cerami A. Circulating fibrocytes define a new leukocyte subpopulation that mediates tissue repair. Mol Med. 1994;1:71–81.

    CAS  PubMed  Google Scholar 

  7. Herzog EL, Bucala R. Fibrocytes in health and disease. Exp Hematol. 2010;38:548–56.

    Article  CAS  PubMed  Google Scholar 

  8. Delprat B, Ruel J, Guitton MJ, Hamard G, Lenior M, Pujol R, Puel JL, Brabet P, Hamel CP. Deafness and cochlear fibrocyte alterations in mice deficient for the inner ear protein otospiralin. Mol Cell Biol. 2005;25:847–53.

    Article  CAS  PubMed  Google Scholar 

  9. Hong KM, Belperio JA, Keane MP, Burdick MD, Strieter RM. Differentiation of human circulating fibrocytes as mediated by transforming growth factor-beta and peroxisome proliferators-activated receptor gamma. J Biol Chem. 2007;282:22910–20.

    Article  CAS  PubMed  Google Scholar 

  10. Pilling D, Fan T, Huang D, Kaul B, Gomer RH. Identification of markers that distinguish monocyte-derived fibrocytes from monocytes, macrophages, and fibroblasts. PLoS One. 2009;4:e7475.

    Article  PubMed  Google Scholar 

  11. Sakai N, Wada T, Yokoyama H, Lipps M, Ueha S, Matsushima K, Kaneko S. Secondary lymphoid tissue chemokine (SLC/CCL21)/CCR7 signaling regulates fibrocytes in renal fibrosis. Proc Natl Acad Sci USA. 2006;103:14098–103.

    Article  CAS  PubMed  Google Scholar 

  12. Sakai N, Furuichi K, Shinozaki Y, Yamauchi H, Toyama T, Kitajima S, Okumura T, Kokubo S, Kobayashi M, Takasawa K, Takeda S, Yoshimura M, Kaneko S, Wada T. Fibrocytes are involved in the pathogenesis of human chronic kidney disease. Hum Pathol. 2010;41:672–8.

    Article  CAS  PubMed  Google Scholar 

  13. Moore BB, Kolodsick JE, Thannickal VJ, Cooke K, Moore TA, Hogaboam C, Wilke CA, Toews GB. CCR2-mediated recruitment of fibrocytes to the alveolar space after fibrotic injury. Am J Pathol. 2005;166:675–84.

    Article  CAS  PubMed  Google Scholar 

  14. Phillips RJ, Burdick MD, Hong K, Lutz MA, Murray LA, Xue YY, Belperio JA, Keane MP, Strieter RM. Circulating fibrocytes traffic to the lungs in response to CXCL12 and mediate fibrosis. J Clin Invest. 2004;114:438–46.

    CAS  PubMed  Google Scholar 

  15. Ishida Y, Kimura A, Kondo T, Hayashi T, Ueno M, Takakura N, Matsushima K, Mukaida N. Essential roles of the CC chemokine ligand 3-CC chemokine receptor 5 axis in bleomycin-induced pulmonary fibrosis through regulation of macrophage and fibrocyte infiltration. Am J Pathol. 2007;170:843–54.

    Article  CAS  PubMed  Google Scholar 

  16. Abe R, Donnelly SC, Peng T, Bulaca R, Metz CN. Peripheral blood fibrocytes: differentiation pathway and migration to wound sites. J Immunol. 2001;166:7556–62.

    CAS  PubMed  Google Scholar 

  17. Sakai N, Wada T, Iwai M, Horiuchi M, Matsushima K, Kaneko S. The renin–angiotensin system contributes to renal fibrosis through regulation of fibrocytes. J Hypertens. 2008;26:780–90.

    Article  CAS  PubMed  Google Scholar 

  18. Moeller A, Gilpin SE, Ask K, Cox G, Cook D, Gauldie J, Margetts PJ, Farkas L, Dobranowski J, Boylan C, O’Byrne PM, Strieter RM, Kolb M. Circulating fibrocytes are an indicator of poor prognosis in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2009;79:588–94.

    Article  Google Scholar 

  19. Ricardo SD, van Goor H, Eddy AA. Macrophage diversity in renal injury and repair. J Clin Invest. 2008;118:3522–30.

    Article  CAS  PubMed  Google Scholar 

  20. Ninichunk V, Anders HJ. Bone marrow-derived progenitor cells and renal fibrosis. Front Biosci. 2008;13:5163–7.

    Article  Google Scholar 

  21. Sakai N, Wada T, Furuichi K, Shimizu K, Kokubo S, Hara A, Yamahana J, Okumura T, Matsushima K, Yokoyama H, Kaneko S. MCP-1/CCR2-dependent loop for fibrogenesis in human peripheral CD14-positive monocytes. J Leukoc Biol. 2006;79:555–63.

    Article  CAS  PubMed  Google Scholar 

  22. Wada T, Yokoyama H, Su SB, Mukaida N, Iwano M, Dohi K, Takahashi Y, Sasaki T, Furuichi K, Segawa C, Hisada Y, Ohta S, Takasawa K, Kobayashi K, Matsushima K. Monitoring urinary levels of monocyte chemotactic and activating factor reflects disease activity of lupus nephritis. Kidney Int. 1996;49:761–7.

    Article  CAS  PubMed  Google Scholar 

  23. Wada T, Yokoyama H, Furuichi K, Kobayashi K, Harada K, Naruto M, Su SB, Akiyama M, Mukaida N, Matsushima K. Intervention of crescentic glomerulonephritis by antibodies to monocyte chemotactic and activating factor (MCAF/MCP-1). FASEB J. 1996;10:1418–25.

    CAS  PubMed  Google Scholar 

  24. Wada T, Furuichi K, Segawa C, Shimizu M, Sakai N, Takeda S, Takasawa K, Kida H, Kobayashi K, Mukaida N, Ohmoto Y, Matsushima K, Yokoyama H. MIP-1α and MCP-1 contribute crescents and interstitial lesions in human crescentic glomerulonephritis. Kidney Int. 1999;56:995–1003.

    Article  CAS  PubMed  Google Scholar 

  25. Wada T, Furuichi K, Sakai N, Iwata Y, Yoshimoto K, Shimizu M, Takeda S, Takasawa K, Yoshimura M, Kida H, Kobayashi KI, Mukaida N, Naito T, Matsushima K, Yokoyama H. Up-regulation of monocyte chemoattractant protein-1 in tubulointerstitial lesions of human diabetic nephropathy. Kidney Int. 2000;58:1492–8.

    Article  CAS  PubMed  Google Scholar 

  26. Wu X, Dolecki GJ, Sherry B, Zagorski J, Lefkowith JB. Chemokines are expressed in a myeloid cell-dependent fashion and mediate distinct functions in immune complex glomerulonephritis in rat. J Immunol. 1997;158:3917–24.

    CAS  PubMed  Google Scholar 

  27. Wada T, Furuichi K, Sakai N, Iwata Y, Kitagawa K, Ishida Y, Kondo T, Hashimoto H, Ishiwata Y, Mukaida N, Tomosugi N, Matsushima K, Egashira K, Yokoyama H. Gene therapy via blockade of monocyte chemoattractant protein-1 for renal fibrosis. J Am Soc Nephrol. 2004;15:940–8.

    Article  CAS  PubMed  Google Scholar 

  28. Kitagawa K, Wada T, Furuichi K, Hashimoto H, Ishiwata Y, Asano M, Takeya M, Kuziel WA, Matsushima K, Mukaida N, Yokoyama H. Blockade of CCR2 ameliorates progressive fibrosis in kidney. Am J Pathol. 2004;165:237–46.

    Article  CAS  PubMed  Google Scholar 

  29. Furuichi K, Gao JL, Murphy PM. Chemokine receptor CX3CR1 regulates renal interstitial fibrosis after ischemia-reperfusion injury. Am J Pathol. 2006;169:372–87.

    Article  CAS  PubMed  Google Scholar 

  30. Rao VH, Meehan DT, Delimont D, Nakajima M, Wada T, Gratton MA, Cosgrove D. Role for macrophage metalloelastase in glomerular basement membrane damage associated with alport syndrome. Am J Pathol. 2006;169:32–46.

    Article  CAS  PubMed  Google Scholar 

  31. Tapmeier TT, Fearn A, Brown K, Chowdhury P, Sacks SH, Sheerin NS, Wong W. Pivotal role of CD4+ T cells in renal fibrosis following ureteric obstruction. Kidney Int. 2010;78:351–62.

    Article  CAS  PubMed  Google Scholar 

  32. Nikolic-Paterson DJ. CD4+ T cells: a potential player in renal fibrosis. Kidney Int. 2010;78:333–5.

    Article  PubMed  Google Scholar 

  33. Grande MT, López-Novoa JM. Fibroblast activation and myofibroblast generation in obstructive nephropathy. Nat Rev Nephrol. 2009;5:319–28.

    Article  CAS  PubMed  Google Scholar 

  34. Zeisberg M, Duffield JS. Resolved: EMT produces fibroblasts in the kidney. J Am Soc Nephrol. 2010;21:1247–53.

    Article  PubMed  Google Scholar 

  35. Liu Y. New insights into epithelial–mesenchymal transition in kidney fibrosis. J Am Soc Nephrol. 2010;21:212–22.

    Article  CAS  PubMed  Google Scholar 

  36. Li J, Qu X, Bertram JF. Endothelial–myofibroblast transition contributes to the early development of diabetic renal interstitial fibrosis in streptozotocin-induced diabetic mice. Am J Pathol. 2009;175:1380–8.

    Article  CAS  PubMed  Google Scholar 

  37. Kizu A, Medici D, Kalluri R. Endothelial–mesenchymal transition as a novel mechanism for generating myofibroblasts during diabetic nephropathy. Am J Pathol. 2009;175:371–3.

    Article  Google Scholar 

  38. Bechtel W, McGoohan S, Zeisberg EM, Müller GA, Kalbacher H, Salant DJ, Müller CA, Kalluri R, Zeisberg M. Methylation determines fibroblast activation and fibrogenesis in the kidney. Nat Med. 2010;16:544–50.

    Article  CAS  PubMed  Google Scholar 

  39. Humphreys BD, Lin SL, Kobayashi A, Hudson TE, Nowlin BT, Bonventre JV, Valerius MT, McMahon AP, Duffield JS. Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis. Am J Pathol. 2010;176:85–97.

    Article  CAS  PubMed  Google Scholar 

  40. Lin SL, Kisseleva T, Brenner DA, Duffield JS. Pericytes and perivascular fibroblasts are the primary source of collagen-producing cells in obstructive fibrosis of the kidney. Am J Pathol. 2008;173:1617–27.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

TW is a recipient of a Grant-in-Aid from the Ministry of Education, Science, Sports and Culture in Japan and Takeda Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Wada.

About this article

Cite this article

Wada, T., Sakai, N., Sakai, Y. et al. Involvement of bone-marrow-derived cells in kidney fibrosis. Clin Exp Nephrol 15, 8–13 (2011). https://doi.org/10.1007/s10157-010-0372-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10157-010-0372-2

Keywords

Navigation