Skip to main content
Log in

Neurophysiological correlates of cognitive disturbances in multiple sclerosis

  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Cognitive impairment is common in multiple sclerosis, mostly attributed to involvement of cortico-cortical and cortico-subcortical connections. The latter may be explored using the analysis of bioelectrical activity such as power and coherence of the electroencephalogram at rest and its reactivity to stimulus processing and cognitive activities, such as event-related desynchronization and event-related potentials. Although these methods are very useful for assessing information processing during cognitive tasks and other activities, their value in detecting cognitive impairment concerning sensitivity and specificity needs to be validated and they have been mostly used for understanding the physiopathology of cognitive impairment in different forms and stages of the diseases. Nevertheless, newer applications such as longitudinal monitoring and effects of treatment, although explored only in pilot studies, seem quite promising allowing objective measures potentially useful as secondary endpoints in clinical trials aimed at preserving or improving cognition in MS patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aminoff JC, Goodin DS (2001) Long-latency cerebral event-related potentials in multiple sclerosis. J Clin Neurophysiol 18:372–377

    Article  CAS  PubMed  Google Scholar 

  2. Arrondo G, Alegre M, Sepulcre J, Iriarte J, Artieda J, Villoslada P (2009) Abnormalities in brain synchronization are correlated with cognitive impairment in multiple sclerosis. Multiple Scler 15:509–516

    Article  CAS  Google Scholar 

  3. Chen R, Yassen Z, Cohen LG, Hallet M (1998) The time course of corticospinal excitability in reaction time and self-paced movements. Ann Neurol 44:317–325

    Article  CAS  PubMed  Google Scholar 

  4. Comi G, Martinelli V, Locattelli T, Leocani L, Medaglini S (1998) Neurophysiological and cognitive markers of disease evolution in multiple sclerosis. Multiple Scler 4:260–265

    CAS  Google Scholar 

  5. Comi G, Leocani L, Locatelli T, Medaglini S, Martinelli V (1991) Electrophysiological investigations in multiple sclerosis dementia. Electroencephalogr Clin Neurophysiol 50(Suppl):480–485

    Google Scholar 

  6. Comi G, Leocani L, Rossi P, Colombo B (2001) Physiopathology and treatment of fatigue in multiple sclerosis. J Neurol 248:174–179

    Article  CAS  PubMed  Google Scholar 

  7. Cover KS, Vrenken H, Geurts JJG, van Ooesten BW, Jelles B, Polman CH, Stam CJ, van Dijk BW (2006) Multiple sclerosis patients show a highly significant decrease in alpha band interhemispheric syncronization measured using MEG. Neuroimage 29:783–788

    Article  PubMed  Google Scholar 

  8. Donching E, Coles MGH (1988) Is the P300 component a manifestation of context updating? Behav Brain Sci 11:357–374

    Article  Google Scholar 

  9. Ellger T, Bethke F, Frese A, Luettmann RJ, Buchheister A, Ringelstein EB, Evers S (2002) Event-related potentials in different subtypes of multiple sclerosis—a cross-sectional study. J Neurol Sci 205:35–40

    Article  PubMed  Google Scholar 

  10. Filipovic SR, Drulovic J, Stojsavlievic N, Levic Z (1997) The effects of high-dose intravenous methylprednisolone on event-related potentials in patients with multiple sclerosis. J Neurol Sci 152:147–153

    Article  CAS  PubMed  Google Scholar 

  11. Filippi M, Rocca MA, Colombo B, Falini A, Codella M, Scotti G, Comi G (2002) Functional magnetic resonance imaging correlates of fatigue in multiple sclerosis. Neuroimage 15:559–567

    Article  CAS  PubMed  Google Scholar 

  12. Flechter S, Vardi J, Finkelstein Y, Pollak L (2007) Cognitive dysfunction evaluation in multiple sclerosis patients treated with interferon beta-1b: an open-label prospective 1 year study. Isr Med Assoc J 9:457–459

    CAS  PubMed  Google Scholar 

  13. Gerschlager W, Beisteiner R, Deecke L, Dirnberger G, Endl W, Kollegger H, Lindinger G, Vass K, Lang W (2000) Electrophysiological, neuropsychological and clinical findings in multiple sclerosis patients receiving interferon beta-1b: a 1-year follow-up. Eur Neurol 44:205–209

    Article  CAS  PubMed  Google Scholar 

  14. Giesser BS, Schroeder MM, LaRocca NG, Kurtzberg D, Ritter W, Vaughan HG, Scheinberg LC (1992) Endogenous event-related potentials as index of dementia in multiple sclerosis patients. Electroencephalogr Clin Neurophysiol 82:320–329

    Article  CAS  PubMed  Google Scholar 

  15. Gil R, Zai L, Neau JP, Jonveaux T, Agbo C, Rosolacci T, Burbaud P, Ingrand P (1993) Event-related auditory evoked potentials and multiple sclerosis. Electroencephalogr Clin Neurophysiol 88:182–187

    Article  CAS  PubMed  Google Scholar 

  16. Gonzalez-Rosa JJ, Vazquez-Marrufo M, Vaquero E, Duque P, Borges M, Gamero MA, Gomez CM, Izquierdo G (2006) Differential cognitive impairment for diverse forms of multiple sclerosis. BMC Neurosci 7:39–49

    Article  PubMed  Google Scholar 

  17. Haiman G, Pratt H, Miller A (2008) Brain responses to verbal stimuli among multiple sclerosis patients with pseudobulbar effect. J Neurol Sci 27:137–147

    Article  Google Scholar 

  18. Honig LS, Ramsay RE, Sheremata WA (1992) Event-related potentials P300 in multiple sclerosis: relation to magnetic resonance imaging and cognitive impairment. Arch Neurol 49:44–50

    CAS  PubMed  Google Scholar 

  19. Jung J, Morlet D, Mercier B, Confavreux C, Fischer C (2006) Mismatch negativity (MMN) in multiple sclerosis: an event-related potentials study in 46 patients. Clin Neurophysiol 117:85–93

    Article  PubMed  Google Scholar 

  20. Kocer B, Unal T, Nazliel B, Biyikli Z, Yesilbudak Z, Karakas S, Irkec C (2008) Evaluating sub-clinical cognitive dysfunction and event-related potentials (P300) in clinically isolated syndrome. Neurol Sci 29:435–444

    Article  PubMed  Google Scholar 

  21. Krupp LB, Alvarez LA, LaRocca NG, Scheinberg LC (1988) Fatigue in multiple sclerosis. Arch Neurol 45:435–437

    CAS  PubMed  Google Scholar 

  22. Krupp L, LaRocca N, MuirNash J, Steinberg A (1989) The fatigue severity scale—application to patients with multiple sclerosis and systemic lupus erythematosus. Arch Neurol 46:1121–1123

    CAS  PubMed  Google Scholar 

  23. Leocani L, Toro C, Magnanotti P, Zhuang P, Hallett M (1997) Event-related coherence and event-related desynchronization/synchronization in the 10 Hz and 20 Hz EEG during self-paced movements. Electroencephalogr Clin Neurophysiol 104:199–206

    Article  CAS  PubMed  Google Scholar 

  24. Leocani L, Locatelli T, Martinelli V, Rovaris M, Falautano M, Filippi M, Magnani G, Comi G (2000) Electroencephalography coherence analysis in multiple sclerosis: correlation with clinical, neurophysiological, and MRI findings. J Neurol Neurosurg Psychiatry 69:192–198

    Article  CAS  PubMed  Google Scholar 

  25. Leocani L, Comi G (2000) Neurophysiological investigations in multiple sclerosis. Curr Opin Neurol 13:255–261

    Article  CAS  PubMed  Google Scholar 

  26. Leocani L, Toro C, Zhuang P, Gerloff C, Hallett M (2001) Event-related desynchronization in reaction time paradigms: a comparison with event-related potentials and corticospinal excitability. Clin Neurophysiol 112:923–930

    Article  CAS  PubMed  Google Scholar 

  27. Leocani L, Colombo B, Magnani G, Martinelli-Boneschi F, Cursi M, Rossi P, Martinelli V, Comi G (2001) Fatigue in multiple sclerosis is associated with abnormal cortical activation to voluntary movement—EEG evidence. Neuroimage 13:1186–1192

    Article  CAS  PubMed  Google Scholar 

  28. Leocani L, Rovaris M, Martinelli-Boneschi F, Annovazzi P, Filippi M, Colombo B, Martinelli V, Comi G (2005) Movement preparation is affected by tissue damage in multiple sclerosis: evidence from EEG event-related desynchronization. Clin Neurophysiol 116:1515–1519

    Article  CAS  PubMed  Google Scholar 

  29. Magnano I, Aiello I, Piras MR (2006) Cognitive impairment and neurophysiological correlates in MS. J Neurol Sci 245:117–122

    Article  CAS  PubMed  Google Scholar 

  30. Nagels G, D’hooge MB, Vleugels L, Kos D, Despontin M, De Deyn PP (2007) P300 and treatment effect of modafinil on fatigue in multiple sclerosis. J Clin Neurosci 114:33–40

    Article  Google Scholar 

  31. Newton R, Barrett G, Callanan M, Towell A (1989) Cognitive event-related potentials in multiple sclerosis. Brain 112:1637–1660

    Article  PubMed  Google Scholar 

  32. Papageorgiou CC, Sfagos C, Kosma KK, Kontoangelos KA, Triantafyllou N, Vassilopoulos D, Rabavilas AD, Soldatos CR (2007) Changes in LORETA and conventional patterns of P600 after steroid treatment in multiple sclerosis patients. Prog Neuropsychopharmacol Biol Psychiatry 31:234–241

    Article  CAS  PubMed  Google Scholar 

  33. Pelosi L, Geesken JM, Holly M, Hayward M, Blumhardt LD (1997) Working memory impairment in early multiple sclerosis. Evidence from an event-related potential study of patients with clinically isolated myelopathy. Brain 120:2039–2058

    Article  PubMed  Google Scholar 

  34. Pfurtscheller G (1981) Central beta rhythm during sensorimotor activities in man. Electroencephalogr Clin Neurophysiol 5:253–264

    Google Scholar 

  35. Piras MR, Magnano I, Canu ED, Paulus KS, Satta WM, Soddu A, Conti M, Achene A, Solinas G, Aiello I (2003) Longitudinal study of cognitive dysfunction in multiple sclerosis: neuropsychological, neuroradiological, and neurophysiological findings. J Neurol Neurosurg Psychiatry 74:878–885

    Article  CAS  PubMed  Google Scholar 

  36. Polich J, Romine JS, Sipe JC, Aung M, Dalessio DJ (1992) P300 in multiple sclerosis: a preliminary report. Int J Psychophysiol 12:155–163

    Article  CAS  PubMed  Google Scholar 

  37. Polich J, Herbst KL (2000) P300 as a clinical assay: rationale, evaluation, and findings. Int J Psychophysiol 38:3–19

    Article  CAS  PubMed  Google Scholar 

  38. Rao SM (1995) Neuropsychology of multiple sclerosis. Curr Opin Neurol 8:216–220

    Article  CAS  PubMed  Google Scholar 

  39. Roelcke U, Kappos L, Lechner-Scott J, Brunnschweiler H, Huber S, Ammann W, Plohmann A, Dellas S, Maguire RP, Missimer J, Radü EW, Steck A, Leenders KL (1997) Reduced glucose metabolism in the frontal cortex and basal ganglia of multiple sclerosis patients with fatigue: a 18F-fluorodeoxyglucose positron emission tomography study. Neurology 48:1566–1571

    CAS  PubMed  Google Scholar 

  40. Ruchkin DS, Graftman J, Krauss GL, Johnson R Jr, Canoune H, Ritter W (1994) Event-related brain potential evidence for a verbal working memory deficit in multiple sclerosis. Brain 117:289–305

    Article  PubMed  Google Scholar 

  41. Rugg M, Coles M (1995) Electrophysiology of mind: event related brain potentials and cognition. Oxford University Press, USA

    Google Scholar 

  42. Sailer M, Heinze HJ, Tendolkar I, Decker U, Kreye O, v Rolbicki U, Münte TF (2001) Influence of cerebral lesion volume and lesion distribution on event-related brain potentials in multiple sclerosis. J Neurol 248:1049–1055

    Article  CAS  PubMed  Google Scholar 

  43. Sandroni P, Walker C, Starr A (1992) ‘Fatigue’ in patients with multiple sclerosis. Motor pathway conduction and event-related potentials. Arch Neurol 49:517–524

    CAS  PubMed  Google Scholar 

  44. Sfagos C, Papageorgiou CC, Kosma KK, Kodopadelis E, Uzunoglu NK, Vassilopoulos D, Ravabilas AD (2003) Working memory deficits in multiple sclerosis: a controlled study with auditory P600 correlates. J Neurol Neurosurg Psychiatry 74:1231–1235

    Article  CAS  PubMed  Google Scholar 

  45. Tecchio F, Zito G, Zappasodi F, Dell’Acqua ML, Landi D, Nardo D, Lupoi D, Rossini PM, Filippi MM (2008) Intra-cortical connectivity in multiple sclerosis: a neurophysiological approach. Brain 131:1783–1792

    Article  PubMed  Google Scholar 

  46. Triantafyllou NI, Zalonis I, Kokotis P, Anthracopoulos M, Siafacas A, Malliara S, Papageorgiou C (1992) Cognition in relapsing remitting multiple sclerosis: a multichannel event-related potential (P300) study. Acta Neurol Scand 85:10–13

    Article  CAS  PubMed  Google Scholar 

  47. Vazquez-Marrufo M, Gonzalez-Rosa JJ, Vaquero E, Duque P, Escera C, Borges M, Izquierdo G, Gómez CM (2008) Abnormal ERPS and high frequency bands power in multiple sclerosis. Intern J Neurosci 118:27–38

    Article  CAS  Google Scholar 

  48. Vazquez-Marrufo M, Gonzalez-Rosa JJ, Vaquero E, Duque P, Borges M, Gomez C, Izquierdo G (2008) Quantitative electroencephalography reveals different physiological profiles between benign and remitting-relapsing multiple sclerosis patients. BMC Neurol 8:44–55

    Article  PubMed  Google Scholar 

  49. Whelan R, Lonergan R, Kiiski H, Nolan H, Kinsella K, Hutchinson M, Tubridy N, Reilly RB (2010) A high-density ERP study reveals latency, amplitude, and topographical differences in MS patents vs controls. J Neurol Sci 293:45–50

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Dr. Javier J. Gonzalez-Rosa was supported by an Intraeuropean Marie Curie Fellowship (IEF) Ref. 221088.

Conflict of interest

The authors declare that there is no conflict of interest related to this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Letizia Leocani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leocani, L., Gonzalez-Rosa, J.J. & Comi, G. Neurophysiological correlates of cognitive disturbances in multiple sclerosis. Neurol Sci 31 (Suppl 2), 249–253 (2010). https://doi.org/10.1007/s10072-010-0398-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-010-0398-y

Keywords

Navigation