Skip to main content
Log in

A large-scale performance study of entropy-based image thresholding techniques using new SAD metric

  • Theoretical Advances
  • Published:
Pattern Analysis and Applications Aims and scope Submit manuscript

Abstract

The paper presents a novel method to measure the performance of entropy-based image thresholding techniques using a new Sum of Absolute value of Differences (SAD) metric in the absence of ground-truth images. The metric is further applied to estimate the parameters of generalized Renyi, Tsallis, Masi entropy measures and the optimal threshold automatically from the image histogram. This leads to a new entropy-based image thresholding algorithm with three variants—one for each generalized entropy. The SAD metric and proposed method are first validated using ground-truth images HYTA dataset. The SAD metric is compared with misclassification error metric, Jaccard and SSIM indices and is found to exhibit consistent behavior. It is further observed that the proposed new method with SAD metric produces same or less misclassification errors than the older algorithms. Inspired by the success of the results, a large-scale performance analysis of 8 image thresholding algorithms over diverse datasets containing 621 images is carried out. The investigation reveals that the variant of the new algorithm with Tsallis, Renyi and Masi entropies segment images better than others.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Stolte S, Fang R (2020) A survey on medical image analysis in diabetic retinopathy. Med Image Anal 64:1. https://doi.org/10.1016/j.media.2020.101742

    Article  Google Scholar 

  2. Banerjee S, Chakraborty C, Chatterjee S (2018) Internet of things and big data analytics for smart generation. Springer, Berlin

    Google Scholar 

  3. Zheng L, Li B, Yang B, Song H, Lu Z (2019) Lane-level road network generation techniques for lane-level maps of autonomous vehicles: A survey. Sustainability 11(16):1–19. https://doi.org/10.3390/su11164511

    Article  Google Scholar 

  4. Qureshi R, Uzair M, Khurshid K, Yana H (2019) Hyperspectral document image processing: applications, challenges and future prospects. Pattern Recogn 90:12–22. https://doi.org/10.1016/j.patcog.2019.01.026

    Article  Google Scholar 

  5. Kumar N (2018) Thresholding in salient object detection: a survey. Multimed Tools Appl 77:19139–19170. https://doi.org/10.1007/s11042-017-5329-y

    Article  Google Scholar 

  6. Shrivastava S, Kumar A(2019) Partitioned based image segmentation. In: IEEE Conference on Information and Communication Technology , pp. 1–6. https://doi.org/10.1109/CICT48419.2019.9066268

  7. Rodrigues PS, Giraldi GA (2009) Computing the q-index for Tsallis nonextensive image segmentation. In: 2009 XXII Brazilian Symposium on Computer Graphics and Image Processing , pp. 232–237. https://doi.org/10.1109/SIBGRAPI.2009.23

  8. Ramírez-Reyesand A, Hernandez-Montoya AR, Herrera-Corral G, Domínguez-Jiménez I (2016) Determining the entropic index q of Tsallis entropy in images through redundancy. Entropy 18:299–312. https://doi.org/10.3390/e18080299

    Article  Google Scholar 

  9. Khurana S (2015) Comparative study on threshold techniques for image analysis. Int J Eng Res Technol 4:551–554. https://doi.org/10.17577/IJERTV4IS060563

    Article  Google Scholar 

  10. Kapur J, Sahoo P, Wong A (1985) A new method for gray-level picture thresholding using the entropy of the histogram. Comput Vis Grap Image Process 29(3):273–285. https://doi.org/10.1016/0734-189X(85)90125-2

    Article  Google Scholar 

  11. Chang CI, Du Y, Wang J, Guo SM, Thouin PD, Proceedings-Vision IEE (2006) Survey and comparative analysis of entropy and relative entropy thresholding techniques. Image Signal Process 153(6):837–850

    Article  Google Scholar 

  12. Pun T (1981) Entropic thresholding, a new approach. Comput Graphics Image Process 16(3):210–239

    Article  Google Scholar 

  13. Abutaleb AS (1989) Automatic thresholding of gray-level pictures using two-dimensional entropy. Comput Vision Gr Image Process 47(1):22–32

    Article  Google Scholar 

  14. Li CH, Lee CK (1993) Pattern Recogn 26(4):617

    Article  Google Scholar 

  15. Pal NR, Pal SK (1989) Signal Process 16(2):97

    Article  MathSciNet  Google Scholar 

  16. Shannon CE (1948) The Bell System Technical Journal 27(3):379. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x

    Article  MathSciNet  Google Scholar 

  17. Sahoo P, Wilkins C, Yeager J (1997) Pattern Recogn 30:71

    Article  Google Scholar 

  18. Tsallis C (1988) J Stat Phys 52:479. https://doi.org/10.1007/BF01016429

    Article  Google Scholar 

  19. Karmeshu S (2006) Sharma. IEEE Communication Letters 10(8):585. https://doi.org/10.1109/LCOMM.2006.1665118

    Article  Google Scholar 

  20. Karmeshu SS (2006) Power law and Tsallis entropy: network traffic and applications. Chaos, Nonlinearity, Complexity. Studies in Fuzziness and Soft Computing, vol 206. Springer, New York, pp 162–178. https://doi.org/10.1007/3-540-31757-0_5

    Chapter  Google Scholar 

  21. Gellmann M, Tsallis C (2004) Nonextensive Entropy Interdisciplinary Application (OUP USA, 2004)

  22. Sharma S, Pendharkar PC(2022) Software: Evolution and Process 32(4)

  23. Albuquerque MP, Esquef IA, Mello ARG (2004) Pattern Recogn Lett 25:1059

    Article  Google Scholar 

  24. Li Y, Fan X, Li G(2006) in 2006 4th IEEE International Conference on Industrial Informatics (2006), pp. 943–948. https://doi.org/10.1109/INDIN.2006.275704

  25. Lin Q, Ou C (2012) Signal Process 92:2931

    Article  Google Scholar 

  26. Nie F, Zhang P, Li J, Ding D (2017) Signal Process 134:23. https://doi.org/10.1016/j.sigpro.2016.11.004

    Article  Google Scholar 

  27. Sezgin M, Sankur B (2004) J Electron Imaging 13(1):146

    Article  Google Scholar 

  28. Goh TY, Basah SN, Yazid H, Safar MJA, Saad FSA (2018) Measurement 114:298

    Article  Google Scholar 

  29. Sahoo PK, Soltani S, Wong AKC (1988) Computer Vision. Graphics, and Image Processing 41(2):233

    Article  Google Scholar 

  30. Oliva D, Hinojos S, Cuevas E, Pajares G, Avalos O, Galvez J (2017) Expert System with Applications 79:164

    Article  Google Scholar 

  31. Pare S, Bhandari AK, Kumar A, Singh GK (2018) Comput Electr Eng 70:476

    Article  Google Scholar 

  32. Lei B, Fan J (2019) Applied Soft Computing Journal 84:1

    Article  Google Scholar 

  33. Prasad MS, Krishna VR, Reddy L(2011) Asian Journal Of Computer Science And Information Technology1 5, 132

  34. Patro S, Sahu KK(2015) arXiv preprint arXiv:1503.06462

  35. Bae S, Kim M (2015) in 2015 Visual Communications and Image Processing (VCIP) , pp. 1–4

  36. Li Q, Lu W, Yang J (2011) J Atmos Oceanic Tech 28(10):1286

    Article  Google Scholar 

  37. Brain mri data set. https://www.kaggle.com/navoneel/brain-mri-images-for-brain-tumor-detection

  38. Total text data set. https://www.kaggle.com/konradb/text-recognition-total-text-dataset

  39. Osu thermal pedestrian database. http://vcipl-okstate.org/pbvs/bench/Data/01/download.html

  40. Standard images dataset. http://www.imageprocessingplace.com/downloads_V3/root_downloads/image_databases/standard_test_images.zip

  41. Jain R(2014) The art of computer systems performance analysis (Wiley, 2014)

  42. Rogowska J (2000) Overview and fundamentals of medical image segmentation (Academic Press, 2000), pp. 69–85

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shachi Sharma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadi, H., Gupta, S. & Sharma, S. A large-scale performance study of entropy-based image thresholding techniques using new SAD metric. Pattern Anal Applic 26, 473–486 (2023). https://doi.org/10.1007/s10044-022-01121-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10044-022-01121-z

Keywords

Navigation