Skip to main content

Advertisement

Log in

Extreme Climatic Event Triggers a Lake Regime Shift that Propagates Across Multiple Trophic Levels

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Extreme climatic events, such as heatwaves and droughts, are occurring more frequently in many regions of the world. Lakes may be especially vulnerable to climatic perturbations, which can trigger sudden ecosystem changes through alterations in the hydrologic regime. However, the nature of lake response to climatic extremes, and associated long-term ecosystem-level implications are difficult to predict, due to the paucity of time series allowing exploration of ecosystem behavior before, during, and after extreme events. We investigated the impacts of the 2003 European heatwave on a small, stratifying lake by analyzing available limnological data between 1986 and 2012. In summer 2003, a shift from an unvegetated to a macrophyte-dominated regime occurred, due to the rapid spread of a benthic charophyte. We explored candidate mechanisms driving the shift by comparing empirical observations with the outcome of a model on lake alternative states parameterized for our study lake. Our results support the hypothesis that enhanced light availability due to a heatwave-induced decrease in water level drove the switch in dominant primary producers. The spread of the charophyte was associated with strong depletion of inorganic nutrients and suppression of the typical summer phytoplankton peak. These bottom-up interactions triggered cascading effects at higher trophic levels, inducing a decline in herbivorous zooplankters with high food requirements and in predatory taxa. Some of the changes in the lake food web persist through the available time series. If incidence of heatwaves increases, as projected across temperate regions, our findings suggest that abrupt and long-lasting ecosystem-level reorganizations may occur in small, stratifying lakes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Adrian R, Reilly CMO, Zagarese H, Baines SB, Hessen DO, Keller W, Livingstone DM, Sommaruga R, Straile D, Van Donk E, Weyhenmeyer GA, Winder M. 2009. Lakes as sentinels of climate change. Limnol Oceanogr 54:2283–97.

    Article  PubMed Central  PubMed  Google Scholar 

  • Antonietti R, Ferrari I, Rossetti G, Tarozzi L, Viaroli P. 1988. Zooplankton structure in an oligotrophic mountain lake in Northern Italy. Verhandlungen des Internationalen Verein Limnologie 23:545–52.

    Google Scholar 

  • Arend KK, Beletsky D, DePinto JV, Ludsin SA, Roberts JJ, Rucinski DK, Scavia D, Schwab DJ, Höök TO. 2011. Seasonal and interannual effects of hypoxia on fish habitat quality in central Lake Erie. Freshw Biol 56:366–83.

    Article  Google Scholar 

  • Barton AD, Pershing AJ, Litchman E, Record NR, Edwards KF, Finkel ZV, Kiørboe T, Ward BA. 2013. The biogeography of marine plankton traits. Ecol Lett 16:522–34.

    Article  PubMed  Google Scholar 

  • Blindow I, Hargeby A, Hilt S. 2014. Facilitation of clear-water conditions in shallow lakes by macrophytes: differences between charophyte and angiosperm dominance. Hydrobiologia 737:99–110.

  • Blindow I. 1992. Long- and short-term dynamics of submerged macrophytes in two shallow eutrophic lakes. Freshw Biol 28:15–27.

    Article  Google Scholar 

  • Borcard D, Gillet F, Legendre P. 2011. Numerical ecology with R. New York, NY: Springer New York.

    Book  Google Scholar 

  • Bottrell HH, Duncan A, Gliwicz ZM, Grygierek E, Herzig A, Hillbricht-Ilkowska A, Kurasawa H, Larsson P, Weglenska T. 1976. A review of some problems in zooplankton production studies. Nor J Zool 24:419–56.

    Google Scholar 

  • Boucek RE, Rehage JS. 2014. Climate extremes drive changes in functional community structure. Glob Change Biol 20:1821–31.

    Article  Google Scholar 

  • Brown ME. 2008. Nature and nurture in dormancy: dissolved oxygen, pH, and maternal investment impact Bythotrephes longimanus resting egg emergence and neonate condition. Can J Fish Aquat Sci 65:1692–704.

    Article  CAS  Google Scholar 

  • Carpenter SR, Lodge DM. 1986. Effects of submersed macrophytes on ecosystem processes. Aquat Bot 26:341–70.

    Article  Google Scholar 

  • Carpenter SR, Ludwig D, Brock WA. 1999. Management of eutrophication for lakes subject to potentially irreversible change. Ecol Appl 9:751–71.

    Article  Google Scholar 

  • Chambers PA, Kalff J. 1985. Depth distribution and biomass of submersed aquatic macrophyte communities in relation to Secchi depth. Can J Fish Aquat Sci 42:701–9.

    Article  Google Scholar 

  • Daufresne M, Bady P, Fruget JF. 2007. Impacts of global changes and extreme hydroclimatic events on macroinvertebrate community structures in the French RhĂ´ne River. Oecologia 151:544–59.

    Article  PubMed  Google Scholar 

  • DeYoung B, Barange M, Beaugrand G, Harris R, Perry RI, Scheffer M, Werner F. 2008. Regime shifts in marine ecosystems: detection, prediction and management. Trends Ecol Evol 23:402–9.

    Article  PubMed  Google Scholar 

  • Downing JA, Prairie YT, Cole JJ, Duarte CM, Tranvik LJ, Striegl RG, McDowell WH, Kortelainen P, Caraco NF, Melack JM. 2006. The global abundance and size distribution of lakes, ponds, and impoundments. Limnol Oceanogr 51:2388–97.

    Article  Google Scholar 

  • Edwards KF, Thomas MK, Klausmeier CA, Litchman E. 2012. Allometric scaling and taxonomic variation in nutrient utilization traits and maximum growth rate of phytoplankton. Limnol Oceanogr 57:554–66.

    Article  Google Scholar 

  • Field KM, Prepas EE. 1997. Increased abundance and depth distribution of pelagic crustacean zooplankton during hypolimnetic oxygenation in a deep, eutrophic Alberta lake. Can J Fish Aquat Sci 54:2146–56.

    Article  Google Scholar 

  • Folke C, Carpenter S, Walker B, Scheffer M, Elmqvist T, Gunderson L, Holling CS. 2004. Regime shifts, resilience, and biodiversity in ecosystem management. Annu Rev Ecol Evol Syst 35:557–81.

    Article  Google Scholar 

  • Frodge JD, Thomas GL, Pauley GB. 1990. Effects of canopy formation by floating and submergent aquatic macrophytes on the water quality of two shallow Pacific Northwest lakes. Aquat Bot 38:231–48.

    Article  Google Scholar 

  • Gerten D, Adrian R. 2002. Species-specific changes in the phenology and peak abundance of freshwater copepods in response to warm summers. Freshw Biol 47:2163–73.

    Article  Google Scholar 

  • Gilbert JJ, Schroeder T. 2004. Rotifers from diapausing, fertilized eggs: unique features and emergence. Limnol Oceanogr 49:1341–54.

    Article  Google Scholar 

  • Groffman PM, Baron JS, Blett T, Gold AJ, Goodman I, Gunderson LH, Levinson BM, Palmer MA, Paerl HW, Peterson GD, Poff NL, Rejeski DW, Reynolds JF, Turner MG, Weathers KC, Wiens J. 2006. Ecological thresholds: the key to successful environmental management or an important concept with no practical application? Ecosystems 9:1–13.

    Article  Google Scholar 

  • Hampton SE. 2005. Increased niche differentiation between two Conochilus species over 33 years of climate change and food web alteration. Limnol Oceanogr 50:421–6.

    Article  Google Scholar 

  • Hansen GJA, Ives AR, Vander Zanden MJ, Carpenter SR. 2013. Are rapid transitions between invasive and native species caused by alternative stable states, and does it matter? Ecology 94:2207–19.

    Article  PubMed  Google Scholar 

  • Hare SR, Mantua NJ. 2000. Empirical evidence for North Pacific regime shifts in 1977 and 1989. Prog Oceanogr 47:103–45.

    Article  Google Scholar 

  • Hart RC. 1996. Naupliar and copepodite growth and survival of two freshwater calanoids at various food levels: demographic contrasts, similarities, and food needs. Limnol Oceanogr 41:648–58.

    Article  Google Scholar 

  • Hawes I, Schwarz AM. 1996. Epiphytes from a deep-water characean meadow in an oligotrophic New Zealand lake: species composition, biomass and photosynthesis. Freshw Biol 36:297–313.

    Article  CAS  Google Scholar 

  • Hazeu GW, Roupioz LFS, Perez-Soba M, Eds. 2010. Europe’s ecological backbone: recognising the true value of our mountains. Copenhagen, Denmark: European Environmental Agency.

    Google Scholar 

  • Herzig A. 1983. The ecological significance of the relationship between temperature and duration of embryonic development in planktonic freshwater copepods. Hydrobiologia 100:65–91.

    Article  Google Scholar 

  • IPCC. 2012. Managing the risks of extreme events and disasters to advance climate change adaptation. A special report of working groups I and II of the intergovernmental panel on climate change. In: Field CB, Barros V, Stocker TF, Qin D, Dokken DJ, Ebi KL, Mastrandrea MD, Mach KJ, Plattner G-K, Allen SK, Tignor M, Midgley PM, Eds. Cambridge, UK, and New York, NY, USA: Cambridge University Press

  • Jankowski T, Livingstone DM, BĂĽhrer H, Forster R, Niederhauser P. 2006. Consequences of the 2003 European heat wave for lake temperature profiles, thermal stability, and hypolimnetic oxygen depletion: Implications for a warmer world. Limnol Oceanogr 51:815–19.

    Article  Google Scholar 

  • Jaschinski S, Brepohl DC, Sommer U. 2010. The trophic importance of epiphytic algae in a freshwater macrophyte system (Potamogeton perfoliatus L.): stable isotope and fatty acid analyses. Aquat Sci 73:91–101.

    Article  Google Scholar 

  • Jentsch A, Beierkuhnlein C. 2008. Research frontiers in climate change: effects of extreme meteorological events on ecosystems. Comptes Rendus-Geoscience 340:621–8.

    Article  Google Scholar 

  • Jentsch A, Kreyling J, Beierkuhnlein C. 2007. A new generation of climate change experiments: events, not trends. Front Ecol Environ 5:315–24.

  • Jimenez-Melero R. 2005. Embryonic and naupliar development of Eudiaptomus gracilis and Eudiaptomus graciloides at different temperatures: comments on individual variability. J Plankton Res 27:1175–87.

    Google Scholar 

  • Jöhnk KD, Huisman J, Sharples J, Sommeijer B, Visser PM, Stroom JM. 2008. Summer heatwaves promote blooms of harmful cyanobacteria. Glob Change Biol 14:495–512.

    Article  Google Scholar 

  • Jones I, Ed. 2013. The impact of extreme events on freshwater ecosystems. London, UK: The British Ecological Society.

    Google Scholar 

  • Kairesalo T, JĂłnsson GS, Gunnarsson K, JĂłnasson PM. 1989. Macro- and microalgal production within a Nitella opaca bed in Lake Thingvallavatn, Iceland. J Ecol 77:332–42.

    Article  Google Scholar 

  • Kairesalo T, JĂłnsson GS, Gunnarsson K, Lindegaard C, JĂłnasson PM. 1992. Metabolism and community dynamics within Nitella opaca (Charophyceae) beds in Thingvallavatn. Oikos 64:241–56.

    Article  Google Scholar 

  • Kamenir Y, Morabito G. 2009. Lago Maggiore oligotrophication as seen from the long-term evolution of its phytoplankton taxonomic size structure. J Limnol 68:146–61.

    Article  Google Scholar 

  • Kliment T, Peterseil J, Oggioni A, Pugnetti A, Blankman D. 2013. Life+ EnvEurope DEIMS-improving access to long-term ecosystem monitoring data in Europe. In: EGU general assembly conference abstracts 15. p 4920.

  • Koenings JP, Edmundson JA. 1991. Secchi disk and photometer estimates of light regimes in Alaskan lakes: effects of yellow color and turbidity. Limnol Oceanogr 36:91–105.

    Article  Google Scholar 

  • Kortsch S, Primicerio R, Beuchel F, Renaud PE, Rodrigues J, Lønne OJ, Gulliksen B. 2012. Climate-driven regime shifts in Arctic marine benthos. Proc Natl Acad Sci USA 109:14052–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kufel L, Kufel I. 2002. Chara beds acting as nutrient sinks in shallow lakes—a review. Aquat Bot 72:249–60.

    Article  Google Scholar 

  • Landers DH. 1982. Effects of naturally senescing aquatic macrophytes on nutrient chemistry and chlorophyll a of surrounding waters. Limnol Oceanogr 27:428–39.

    Article  CAS  Google Scholar 

  • Legendre P, Dallot S, Legendre L. 1985. Succession of species within a community: chronological clustering, with applications to marine and freshwater zooplankton. Am Nat 125:257–88.

    Article  Google Scholar 

  • Legendre P, Legendre L. 1998. Numerical ecology. 2nd edn. Amsterdam: Elsevier Science B.V.

    Google Scholar 

  • Luterbacher J, Dietrich D, Xoplaki E, Grosjean M, Wanner H. 2004. European seasonal and annual temperature variability, trends, and extremes since 1500. Science 303:1499–503.

    Article  CAS  PubMed  Google Scholar 

  • Maazouzi C, Masson G, Izquierdo MS, Pihan J-C. 2008. Midsummer heat wave effects on lacustrine plankton: variation of assemblage structure and fatty acid composition. J Therm Biol 33:287–96.

    Article  CAS  Google Scholar 

  • Middelboe AL, Markager S. 1997. Depth limits and minimum light requirements of freshwater macrophytes. Freshw Biol 37:553–68.

    Article  Google Scholar 

  • Mouthon J, Daufresne M. 2006. Effects of the 2003 heatwave and climatic warming on mollusc communities of the SaĂ´ne: a large lowland river and of its two main tributaries (France). Glob Change Biol 12:441–9.

    Article  Google Scholar 

  • Mulderij G, Van Nes EH, Van Donk E. 2007. Macrophyte–phytoplankton interactions: the relative importance of allelopathy versus other factors. Ecol Model 204:85–92.

    Article  Google Scholar 

  • Munari C. 2011. Effects of the 2003 European heatwave on the benthic community of a severe transitional ecosystem (Comacchio Saltworks, Italy). Mar Pollut Bull 62:2761–70.

    Article  CAS  PubMed  Google Scholar 

  • Obertegger U, Smith HA, Flaim G, Wallace RL. 2011. Using the guild ratio to characterize pelagic rotifer communities. Hydrobiologia 662:157–62.

    Article  Google Scholar 

  • Oggioni A, Carrara P, Kliment T, Peterseil J, Schentz H. 2012. Monitoring of environmental status through long term series: Data management system in the enveurope project. In: Hans-Knud Arndt WPE, Knetsch G, Eds. EnviroInfo 2012. Shaker Verlag. pp 287–95.

  • Parker BR, Vinebrooke RD, Schindler DW. 2008. Recent climate extremes alter alpine lake ecosystems. Proc Natl Acad Sci USA 105:12927–31.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pourriot R. 1977. Food and feeding habits of Rotifera. Arch Hydrobiol 8:243–60.

    Google Scholar 

  • Primicerio R, Rossetti G, Amundsen PA, Klemetsen A. 2007. Impact of climate change on arctic and alpine lakes: effects on phenology and community dynamics. In: Arctic alpine ecosystems and people in a changing environment. Berlin: Springer Verlag. pp 51–69.

  • Rebetez M, Dupont O, Giroud M. 2009. An analysis of the July 2006 heatwave extent in Europe compared to the record year of 2003. Theoret Appl Climatol 95:1–7.

    Article  Google Scholar 

  • Rebetez M, Mayer H, Dupont O. 2006. Heat and drought 2003 in Europe: a climate synthesis. Ann For Sci 63:569–77.

    Article  Google Scholar 

  • Risgaard-Petersen N, Jensen K. 1997. Nitrification and denitrification in the rhizosphere of the submerged aquatic macrophyte Lobelia dortmanna. Limnol Oceanogr 42:529–37.

    Article  CAS  Google Scholar 

  • Rojo C, Segura M, Rodrigo MA. 2013. The allelopathic capacity of submerged macrophytes shapes the microalgal assemblages from a recently restored coastal wetland. Ecol Eng 58:149–55.

    Article  Google Scholar 

  • Rossetti G, Ferrari I, Giordani G, Paris G, Rossi V, Viaroli P. 1996. Primi risultati di uno studio a lungo termine su un lago appenninico (Lago Scuro Parmense). Proc Ital Assoc Oceanol Limnol 11:129–40.

    Google Scholar 

  • Rossetti G, Viglioli S. 2001. Contributo allo studio di lungo termine del Lago Scuro Parmense (Appennino settentrionale): risultati della campagna limnologica condotta nel 1998. Proc Ital Assoc Oceanol Limnol 14:331–42.

    Google Scholar 

  • Ruppert J, Fortin M, Rose G, Devillers R. 2010. Environmental mediation of Atlantic cod on fish community composition: an application of multivariate regression tree analysis to exploited marine ecosystems. Mar Ecol Prog Ser 411:189–201.

    Article  Google Scholar 

  • Schär C, Vidale PL, LĂĽthi D, Frei C, Häberli C, Liniger MA, Appenzeller C. 2004. The role of increasing temperature variability in European summer heatwaves. Nature 427:332–6.

    Article  PubMed  Google Scholar 

  • Scheffer M, Carpenter S, Foley JA, Folke C, Walker B. 2001. Catastrophic shifts in ecosystems. Nature 413:591–6.

    Article  CAS  PubMed  Google Scholar 

  • Scheffer M, Carpenter SR. 2003. Catastrophic regime shifts in ecosystems: linking theory to observation. Trends Ecol Evol 18:648–56.

    Article  Google Scholar 

  • Scheffer M, Hosper SH, Meijer M-L, Moss B, Jeppesen E. 1993. Alternative equilibria in shallow lakes. Trends Ecol Evol 8:275–9.

    Article  CAS  PubMed  Google Scholar 

  • Scheffer M, Van Nes EH. 2007. Shallow lakes theory revisited: various alternative regimes driven by climate, nutrients, depth and lake size. Hydrobiologia 584:455–66.

    Article  CAS  Google Scholar 

  • Scheffer M. 1990. Multiplicity of stable states in freshwater systems. Hydrobiologia 200(201):475–86.

    Article  Google Scholar 

  • Scheffer M. 1998. Ecology of shallow lakes. New York, NY: Chapman and Hall.

    Google Scholar 

  • Seebens H, Straile D, Hoegg R, Stich H-B, Einsle U. 2007. Population dynamics of a freshwater calanoid copepod: complex responses to changes in trophic status and climate variability. Limnol Oceanogr 52:2364–72.

    Article  Google Scholar 

  • Shilla D, Asaeda T, Fujino T, Sanderson B. 2006. Decomposition of dominant submerged macrophytes: implications for nutrient release in Myall Lake, NSW, Australia. Wetlands Ecol Manage 14:427–33.

    Article  Google Scholar 

  • Smith MD. 2011. An ecological perspective on extreme climatic events: a synthetic definition and framework to guide future research. J Ecol 99:656–63.

    Article  Google Scholar 

  • Smol JP, Wolfe AP, Birks HJB, Douglas MSV, Jones VJ, Korhola A, Pienitz R, RĂĽhland K, Sorvari S, Antoniades D, Brooks SJ, Fallu M-A, Hughes M, Keatley BE, Laing TE, Michelutti N, Nazarova L, Nyman M, Paterson AM, Perren B, Quinlan R, Rautio M, Saulnier-Talbot E, Siitonen S, Solovieva N, Weckström J. 2005. Climate-driven regime shifts in the biological communities of arctic lakes. Proc Natl Acad Sci USA 102:4397–402.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Søndergaard M, Jensen JP, Jeppesen E. 2003. Role of sediment and internal loading of phosphorus in shallow lakes. Hydrobiologia 506–509:135–45.

    Article  Google Scholar 

  • Søndergaard M, Moss B. 1998. Impact of submerged macrophytes on phytoplankton in shallow freshwater lakes. In: Jeppesen E, Søndergaard M, Søndergaard M, Christoffersen K, Eds. The structuring role of submerged macrophytes in lakes. New York: Springer Verlag. p 115–33.

    Chapter  Google Scholar 

  • Van Donk E, Van de Bund WJ. 2002. Impact of submerged macrophytes including charophytes on phyto- and zooplankton communities: allelopathy versus other mechanisms. Aquat Bot 72:261–74.

    Article  Google Scholar 

  • Van Geest GJ, Coops H, Scheffer M, Van Nes EH. 2007. Long transients near the ghost of a stable state in eutrophic shallow lakes with fluctuating water levels. Ecosystems 10:36–46.

    Google Scholar 

  • Van Nes EH, Scheffer M. 2005. Implications of spatial heterogeneity for catastrophic regime shifts in ecosystems. Ecology 86:1797–807.

    Article  Google Scholar 

  • Van Nes EH, Scheffer M, Van den Berg MS, Coops H. 2002. Dominance of charophytes in eutrophic shallow lakes—when should we expect it to be an alternative stable state? Aquat Bot 72:275–96.

    Article  Google Scholar 

  • Van Nes EH, Rip WJ, Scheffer M. 2007. A theory for cyclic shifts between alternative states in shallow lakes. Ecosystems 10:17–27.

    Google Scholar 

  • Viaroli P, Ferrari I, Paris G, Rossetti G, Menozzi P. 1994. Limnological research on northern Apennine lakes (Italy) in relation to eutrophication and acidification risk. Hydrobiologia 274:155–62.

    Article  CAS  Google Scholar 

  • Weijerman M, Lindeboom H, Zuur AF. 2005. Regime shifts in marine ecosystems of the North Sea and Wadden Sea. Mar Ecol Prog Ser 298:21–39.

    Article  CAS  Google Scholar 

  • Wilhelm S, Adrian R. 2008. Impact of summer warming on the thermal characteristics of a polymictic lake and consequences for oxygen, nutrients and phytoplankton. Freshw Biol 53:226–37.

    Article  CAS  Google Scholar 

  • Williamson CE, Saros JE, Schindler DW. 2009. Sentinels of Change. Science 323:887–8.

    Article  CAS  PubMed  Google Scholar 

  • Zhao D, Jiang H, Cai Y, An S. 2012. Artificial regulation of water level and its effect on aquatic macrophyte distribution in Taihu Lake. PLoS ONE 7:e44836.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Pierluigi Viaroli, Marco Bartoli, Daniele Nizzoli, Stefano Bonaglia, and all students and colleagues at the University of Parma for helping with field and lab work over the years. Rossano Bolpagni and Mattia Azzella performed taxonomic identification of Nitella gracilis. Claire Thomas kindly provided data on solar irradiation managed by MINES ParisTech, ARMINES, and TRANSVALOR. Research at Lake Scuro was funded by different projects over time, including the EnvEurope Life+ project (LIFE08 ENV/IT/000339), NextData—“Data-LTER-Mountain” and the LifeWatch network. We would like to dedicate this work to Ireneo Ferrari, who started the long-term research program at Lake Scuro.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabella Bertani.

Additional information

Author contributions

GR conceived the study. GR and IB performed research. IB, GR, and RP analyzed data and wrote the paper.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1741 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bertani, I., Primicerio, R. & Rossetti, G. Extreme Climatic Event Triggers a Lake Regime Shift that Propagates Across Multiple Trophic Levels. Ecosystems 19, 16–31 (2016). https://doi.org/10.1007/s10021-015-9914-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-015-9914-5

Keywords

Navigation