Skip to main content
Log in

A comparison of gear tooth bending fatigue lives from single tooth bending and rotating gear tests

Ein Vergleich der Ermüdungserscheinungen von Zahnradzähnen aus Einzelzahnbiege- und Drehgetriebetests

  • Originalarbeiten/Originals
  • Published:
Forschung im Ingenieurwesen Aims and scope Submit manuscript

Abstract

Gear tooth bending fatigue failures are instantaneously catastrophic to gear drive power transmission systems. For this reason, gear designers must understand the limits of their design with respect to the desired application and service time. Fatigue testing on gear specimens has been preferred metric on which to base future designs. Single Tooth Bending test (STB) or a Rotating Gear (RG) test methodologies have been used for this purpose. STB type tests generally form the large majority of gear fatigue testing due to cost and availability but does not fully simulate the actual operating conditions of rotating gears in service. As RG evaluations are costly and time-consuming, it is desirable to quantify how a stress-life (SN) relationship regressed through STB testing compares to that produced in RG testing. In this study, both STB and RG test methodologies are employed to test the same specimen design. Matrices of fatigue tests are executed and statistical regression techniques are used to estimate bending fatigue lives as a function of stress for both sets of data. The resultant SN curves are compared to determine any differences in allowable stress. Techniques are then employed using single set data (STBF or RG individually) to demonstrate the calculation of correlation coefficients, which can approximate the total difference determined between the two data sets.

Zusammenfassung

Ermüdungsfehler der Zahnzahnbiegung sind augenblicklich katastrophal für Getriebeantriebssysteme. Ermüdungsprüfungen an Verzahnungsproben wurden für zukünftige Konstruktionen bevorzugt. STB-Baumusterprüfungen bilden in der Regel aufgrund der Kosten und der Verfügbarkeit die überwiegende Mehrheit der Getriebeermüdungsprüfungen, simulieren aber nicht vollständig die tatsächlichen Betriebsbedingungen rotierender Zahnräder im Betrieb. In dieser Studie werden sowohl STB- als auch RG-Testmethoden verwendet, um dasselbe Probendesign zu testen. Die resultierenden SN-Kurven werden verglichen, um eventuelle Unterschiede in der zulässigen Spannung zu bestimmen. Techniken werden dann unter Verwendung einzelner gesetzter Daten (STBF oder RG einzeln) verwendet, um die Berechnung der Korrelationskoeffizienten zu demonstrieren, die die Gesamtdifferenz näherungsweise bestimmen können, die zwischen den zwei Datensätzen bestimmt wird.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

B 50 :

50% failure rate

f :

fatigue test frequency

f s :

number of surface initiated failures

f s s :

number of subsurface initiated failures

F :

STBF test applied force

K d :

dynamic factor

K I :

initiation location factor

K S :

statistical factor

K R S :

total RG to STB factor

K F :

loading factor

K R :

stress factor

N :

number of cycle in a test

N f :

number of cycles to failure

\(N_{if}^{s}\) :

number of cycles to failure for a surface initiated specimen

\(N_{if}^{ss}\) :

number of cycle to failure for a subsurface initiated specimen

p :

failure percentile

q R G :

failure percentile of teeth on a RG specimen

r f :

ratio of surface initiated to total number of failures

R :

fatigue test stress ratio

α 1 :

regressed intercept constant

α 2 :

regressed slope constant

β 1 :

regressed variance constant

γ :

regressed fatigue strength constant

σa :

stress amplitude

σm :

stress mean

σult :

ultimate tensile stress

\(\sigma _{\mathrm{fat}-RG}\) :

fatigue strength from RG test

\(\sigma _{\mathrm{fat}-\mathrm{STB}}\) :

fatigue strength from STBF test

\(\overline{\sigma }_{g}^{f=0}\) :

measured gage stress at 0 Hz

\(\overline{\sigma }_{g}^{f=40}\) :

measured gage stress at 40 Hz

\(\overline{\sigma }_{\max }\) :

normalized maximum gear tooth root bending stress

\(\overline{\sigma }_{RG}^{\left(p\right)}\left(N_{f}\right)\) :

RG SN curve at specified failure percentile

\(\overline{\sigma }_{\mathrm{STB}}^{\left(p\right)}\left(N_{f}\right)\) :

STB SN curve at specified failure percentile

References

  1. Yamanaka M, Matsushima Y, Miwa S, Nartta Y, Inoue K, Kawasaki Y (2010) Comparison of bending fatigue strength among spur gears manufactured by various methods: (influence of manufacturing method on bending strength). J Adv Mech Des Syst Manuf 4(2):480–491

    Google Scholar 

  2. Winkler K, Schurer S, Tobie T, Stahl K (2019) Investigations on the tooth root bending strength and the fatigue fracture characteristics of case-carburized and shot-peened gears of different sizes. Proc Inst Mech Eng Part C J Mech Eng Sci 233(21–22):7338–7349

    Google Scholar 

  3. Oda S, Shimatomi Y (1980) Study on bending fatigue strength of helical gears (1st report, effect of helix angle on bending fatigue strength). Bull JSME 23(177):453–460

    Google Scholar 

  4. Oda S, Shimatomi Y (1980) Study on bending fatigue strength of helical gears (2nd report, bending fatigue strength of carehardened helical gears). Bull JSME 23(177):461–468

    Google Scholar 

  5. Medlin D, Krauss G, Matlock DK, Burris K, Slane M (1995) Comparison of single gear tooth and cantilever beam bending fatigue testing of carburized steel. SAE Pap, vol 950212

    Google Scholar 

  6. Mcpherson DR, Rao SB (2008) Methodology for translating single-tooth bending fatigue data to be comparable to running gear data. Gear Technology: 42–51

    Google Scholar 

  7. Krantz T, Tufts B (2008) Pitting and bending fatigue evaluations of a new case-carburized gear steel. Gear Technol:863–869. https://doi.org/10.1115/DETC2007-34090

    Article  Google Scholar 

  8. Kodeeswaran M, Verma A, Suresh R, Senthilvelan S (2016) Bi-directional and uni-directional bending fatigue performance of unreinforced and carbon fiber reinforced polyamide 66 spur gears. Int J Precis Eng Manuf 17(8):1025–1033

    Google Scholar 

  9. Hohn B‑R, Oster P, Tobie T (2003) Systematic investigations on the influence of case depth on the pitting and bending strength of case carburized gears. In: DETC2003/PTG, Chicago, pp 111–119

    Google Scholar 

  10. Handschuh RF, Krantz T, Lerch BA, Burke CS (2007) Investigation of low-cycle bending fatigue of AISI 9310 steel spur gears. NASA TM, vol 214914

    Google Scholar 

  11. Haberer C, Leitner H, Eichlseder W, Dietrich A (2009) Fatigue life behavior of a hypoid gear tooth root taking the influences of orbital forging into account. In: SAE World Congress and Exhibition, SAE International

    Google Scholar 

  12. Gasparini G, Mariani U, Gorla C, Filippini M, Rosa F (2009) Bending fatigue tests of helicopter case carburized gears: influence of material, design and manufacturing parameters. Gear Technol 26(8):68–76

    Google Scholar 

  13. Wheitner J, Houser DR (1994) Investigation of the effects of manufacturing variations and materials on fatigue crack detection methods in gear teeth. NASA CR, vol 195093

    Google Scholar 

  14. Dobler F, Tobie T, Stahl K (2015) Influence of low temperatures on material properties and tooth root bending strength of case-hardened gears. Proc. ASME Des. Eng. Tech. Conf., vol 10

    Google Scholar 

  15. Dobler F, Tobie T, Stahl K, Nadolski D, Steinbacher M, Hoffmann F (2016) Influence of hardening pattern, base material and residual stress condition on the tooth root bending strength of induction hardened gears. In: Proceedings of the International Conference on Power Transmissions, pp 287–294

    Google Scholar 

  16. Dobler A, Hergesell M, Tobie T, Stahl K (2016) Increased tooth bending strength and pitting load capacity of fine-module gears. Gear Technol 33(7):48–53

    Google Scholar 

  17. Conrado E, Gorla C, Davoli P, Boniardi M (2017) A comparison of bending fatigue strength of carburized and nitrided gears for industrial applications. Eng Fail Anal 78:41–54

    Google Scholar 

  18. Blais P, Toubal L (2020) Single-gear-tooth bending fatigue of HDPE reinforced with short natural fiber. Int J Fatigue 141:105857

    Google Scholar 

  19. Benedetti M, Fontanari V, Höhn BR, Oster P, Tobie T (2002) Influence of shot peening on bending tooth fatigue limit of case hardened gears. Int J Fatigue 24(11):1127–1136

    Google Scholar 

  20. Wagner M, Isaacson A, Knox K, Hylton T, Wagner M, Isaacson A, Knox K, Hylton T (2020) Single tooth bending fatigue testing at any R ratio. In: AGMA Fall Technical Meeting 20FTM09, pp 1–14

    Google Scholar 

  21. Stringer DB, Dykas BD, Laberge KE, Zakrajsek AJ, Handschuh RF (2011) A new high-speed, high-cycle, gear-tooth bending fatigue test capability. NASA TM, vol 217039

    Google Scholar 

  22. Shen T, Krantz T, Sebastian J (2011) Advanced gear alloys for ultra high strength applications. NASA TM, vol 217121

    Google Scholar 

  23. Seabrook JB, Dudley DW (1964) Results of a fifteen-year program of flexural fatigue testing of gear teeth. J Eng Ind 86(3):221–237

    Google Scholar 

  24. Savaria V, Bridier F, Bocher P (2016) Predicting the effects of material properties gradient and residual stresses on the bending fatigue strength of induction hardened aeronautical gears. Int J Fatigue 85:70–84

    Google Scholar 

  25. Sanders A, Houser DR, Kahraman A, Harianto J, Shon S (2011) An experimental investigation of the effect of tooth asymmetry and tooth root shape on root stresses and single tooth bending faituge life of gear teeth. In: ASME International Power Transmission and Gearing Conference, Washington D.C.

    Google Scholar 

  26. SAE International Surface Vehicle Recommended Practice (1997) Single tooth gear bending fatigue test. SAE Stand, vol J1619

    Google Scholar 

  27. Rao SB, Mcpherson DR (2003) Experimental characterization of bending fatigue strength in gear teeth. Gear Technol 20:25–32

    Google Scholar 

  28. Phelan PE, Sell DJ, Dowling WE (1996) Bending fatigue behavior of carburized gear steels: planetary gear test development and evaluation. SAE Pap, vol 960978

    Google Scholar 

  29. Hong IJ, Kahraman A, Anderson N (2020) A rotating gear test methodology for evaluation of high-cycle tooth bending fatigue lives under fully reversed and fully released loading conditions. Int J Fatigue 133:105432

    Google Scholar 

  30. Hong IJ, Kahraman A, Anderson N (2021) An experimental evaluation of high-cycle gear tooth bending fatigue lives under fully reversed and fully released loading conditions with application to planetary gear sets. J Mech Des 143(2):1–9

    Google Scholar 

  31. Hatano A, Namiki K (1992) Application of hard shot peening to automotive transmission gears. SAE Pap, vol 938179

    Google Scholar 

  32. Hasl C, Illenberger C, Oster P, Tobie T, Stahl K (2018) Potential of oil-lubricated cylindrical plastic gears. J Adv Mech Des Syst Manuf 12(1):1–9

    Google Scholar 

  33. Hong IJ, Kahraman A, Anderson N (2020) An experimental evaluation of high-cycle gear tooth bending fatigue lives under fully reversed and fully released loading conditions with application to planetary gear sets. J Mech Des 143(2). https://doi.org/10.1115/1.4047687

    Article  Google Scholar 

  34. Selines RJ (1972) Effect of cyclic stress wave form on corrosion fatigue crack propagation in Al-Zn-Mg alloys. Met Trans 3(9):2525–2531

  35. Menan F, Henaff G (2009) Influence of frequency and exposure to a saline solution on the corrosion fatigue crack growth behavior of the aluminum alloy 2024. Int J Fatigue 31(11–12):1684–1695

    Google Scholar 

  36. Müller G (1873) Zulässige Inanspruchnahme Des Schmiedeeisens Bei Brückenkonstruktionen. Z Österr Ing Archit 25:197–202

    Google Scholar 

  37. Sendeckyj GP (2001) Constant life diagrams—A historical review. Int J Fatigue 23(4):347–353

    Google Scholar 

  38. Novovic D, Dewes RC, Aspinwall DK, Voice W, Bowen P (2004) The effect of machined topography and integrity on fatigue life. Int J Mach Tools Manuf 44(2–3):125–134

    Google Scholar 

  39. Murakami Y (2002) Metal fatigue: effects of small defects and nonmetallic inclusions

    Google Scholar 

  40. Nakajima M, Tokaji K, Itoga H, Ko HN (2003) Morphology of step-wise S‑N curves depending on work-hardened layer and humidity in a high-strength steel. Fatigue Fract Eng Mater Struct 26(12):1113–1118

    Google Scholar 

  41. Stahl K (1999) Statistische Methoden Zur Beurteilung von Bauteillebensdauer Und Zuverlässigkeit Und Ihre Beispielhafte Anwendung Auf Zahnräder. FVA-Forschungsvorhaben, vol 304. Forschungsvereinigung Antriebstechnik, Frankfurt

    Google Scholar 

  42. Rettig H (1987) Ermittlung von Zahnfußfestigkeitskennwerten Auf Verspannungsprüfständen Und Pulsatoren-Vergleich Der Prüfverfahren Und Der Gewonnenen Kennwerte. Antriebstechnik 26:51–55

    Google Scholar 

  43. Pyttel B, Schwerdt D, Berger C (2011) Very high cycle fatigue—Is there a fatigue limit? Int J Fatigue 33(1):49–58

    Google Scholar 

  44. The Gear and Power Transmission (2021) Research Laboratory Windows-LDP, load distribution program. The Ohio State University, Columbus

    Google Scholar 

  45. Pascual FG, Meeker WQ (1997) Analysis of fatigue data with runouts based on a model with nonconstant standard deviation and a fatigue limit parameter. J Test Eval 25(3):292–301

    Google Scholar 

  46. Sutherland H, Veers P (2000) The development of confidence limits for fatigue strength data. In: 2000 ASME Wind Energy Symposium, pp 1–11

    Google Scholar 

  47. Little RE (1990) Optimal stress amplitude selection in estimating median fatigue limits using small samples. J Test Eval 18(2):115–122

    Google Scholar 

  48. Pascual FG (2003) A standardized form of the random fatigue-limit model. Commun Stat Part B Simul Comput 32(4):1205–1221

    MATH  Google Scholar 

Download references

Funding

Not applicable

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isaac Hong.

Ethics declarations

Conflict of interest

I. Hong, Z. Teaford and A. Kahraman declare that they have no competing interests.

Ethical standards

Ethics approval: Not applicable.

Additional information

Availability of data and material

The authors testify that all supporting data is included.

Code availability

Not applicable

Consent to participate

Not applicable.

Consent for publication

All authors consent to the publication of this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, I., Teaford, Z. & Kahraman, A. A comparison of gear tooth bending fatigue lives from single tooth bending and rotating gear tests. Forsch Ingenieurwes 86, 259–271 (2022). https://doi.org/10.1007/s10010-021-00510-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10010-021-00510-w

Navigation