Skip to main content
Log in

Electrocatalytic reduction of hydrogen peroxide at Prussian blue modified electrodes: a RDE study

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Electrocatalytic reduction of hydrogen peroxide at Prussian blue modified electrode has been studied with rotating disk electrode in pH 5.5 and 7.3 solutions. It has been shown that the electrocatalytic cathodic reduction obeys Koutecky–Levich relationship at electrode potentials ranging from 0.1 to −0.4 V vs. Ag/AgCl for low concentrations of peroxide not exceeding 0.3 mM. Within this potential window, the calculated kinetic cathodic current ranges within the limits of 2.15–6.09 and 1.00–3.60 mA cm−2 mM−1 for pH 5.5 and 7.3, respectively. For pH 5.5 and 7.3 solutions, a linear slope of the dependence of kinetic current on electrode potential of −10.8 and −2.89 mA cm−2 mM−1 V−1, respectively, has been obtained. At a higher concentration of peroxide, exceeding 0.6 mM, deviations from Koutecky–Levich relationship have been observed. These deviations appear more expressed at higher potentials and higher solution pH. The results obtained have been interpreted within the frame of two-step reaction mechanism, including (1) dissociative adsorption of hydrogen peroxide with the formation of OH radicals and (2) one-electron reduction of these radicals to OH anions. At a higher concentration of peroxide, and especially at a higher pH, the second process becomes rate limiting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Neff VD (1978) J Electrochem Soc 125:886. doi:10.1149/1.2131575

    Article  CAS  Google Scholar 

  2. Ellis D, Eckhoff M, Neff VD (1981) J Phys Chem 85:1225. doi:10.1021/j150609a026

    Article  CAS  Google Scholar 

  3. Rajan KP, Neff VD (1982) J Phys Chem 86:4361. doi:10.1021/j100219a017

    Article  CAS  Google Scholar 

  4. Itaya K, Akahoshi H, Toshima S (1982) J Electrochem Soc 129:1498. doi:10.1149/1.2124191

    Article  CAS  Google Scholar 

  5. Itaya K, Ataka T, Toshima S (1982) J Am Chem Soc 104:4767. doi:10.1021/ja00382a006

    Article  CAS  Google Scholar 

  6. Zukauskaite N, Malinauskas A, Dobrovolskis P (1985) Lietuvos TSR MA Darbai B Serija 2(147):8

    Google Scholar 

  7. Itaya K, Uchida I, Neff VD (1986) Acc Chem Res 19:162. doi:10.1021/ar00126a001

    Article  CAS  Google Scholar 

  8. Itaya K, Shoji N, Uchida I (1984) J Am Chem Soc 106:3423. doi:10.1021/ja00324a007

    Article  CAS  Google Scholar 

  9. Karyakin AA, Gitelmacher OV, Karyakina EE (1994) Anal Lett 27:2861

    CAS  Google Scholar 

  10. Karyakin AA, Gitelmacher OV, Karyakina EE (1994) Anal Chem 67:2419. doi:10.1021/ac00110a016

    Article  Google Scholar 

  11. Karyakin AA (2001) Electroanalysis 13:813. doi:10.1002/1521-4109(200106) 13:10<813::AID-ELAN813>3.0.CO;2-Z

    Article  CAS  Google Scholar 

  12. Karyakin AA, Karyakina EE (2001) Russ Chem Bull 50:1811. doi:10.1023/A:1014373811238

    Article  CAS  Google Scholar 

  13. Ricci F, Palleschi G (2005) Biosens Bioelectron 21:389. doi:10.1016/j.bios.2004.12.001

    Article  CAS  Google Scholar 

  14. Scholz F, Kahlert H (2006) In: Scholz F, Pickett CJ (eds) Encyclopedia of electrochemistry, vol 7. Wiley, Weinheim

    Google Scholar 

  15. Pandey PC, Singh B (2008) Biosens Bioelectron 24:842. doi:10.1016/j.bios.2008.07.016

    Article  CAS  Google Scholar 

  16. Shan YP, Yang GC, Gong JA, Zhang XL, Zhu LD, Qu LY (2008) Electrochim Acta 53:7751. doi:10.1016/j.electacta.2008.05.035

    Article  CAS  Google Scholar 

  17. Jia FL, Yu CF, Gong JM, Zhang LZ (2008) J Solid State Electrochem 12:1567. doi:10.1007/s10008-008-0521-7

    Article  CAS  Google Scholar 

  18. Adhoum N, Monser L (2008) Sens Actuat B 138:588. doi:10.1016/j.snb.2008.03.039

    Article  Google Scholar 

  19. Malinauskas A, Araminaitė R, Mickevičiūtė R, Garjonytė R (2004) Mater Sci Eng C 24:513. doi:10.1016/j.msec.2004.01.002

    Article  Google Scholar 

  20. Araminaitė R, Garjonytė R, Malinauskas A (2008) Cent Eur J Chem 6:175. doi:10.2478/s11532-008-0021-8

    Article  Google Scholar 

  21. Malinauskas A, Mickevičiūtė G, Araminaitė R, Garjonytė R (2006) Chem Anal Warsz 51:809

    CAS  Google Scholar 

  22. Karyakin AA, Karyakina EE, Gorton L (1999) Electrochem Commun 1:78. doi:10.1016/S1388-2481(99) 00010-7

    Article  CAS  Google Scholar 

  23. Bard AJ, Faulkner LR (2001) Electrochemical methods. Fundamentals and applications, 2nd edn. Wiley, New York, pp 331–367

    Google Scholar 

  24. Damjanovic A (1969) In: Bockris JOM, Conway BE (eds) Modern aspects of electrochemistry, vol. 4. Plenum, New York

    Google Scholar 

Download references

Acknowledgment

Financial support of this work by the Lithuanian State Science and Studies Foundation (project No. N07-009) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Malinauskas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Araminaitė, R., Garjonytė, R. & Malinauskas, A. Electrocatalytic reduction of hydrogen peroxide at Prussian blue modified electrodes: a RDE study. J Solid State Electrochem 14, 149–155 (2010). https://doi.org/10.1007/s10008-009-0802-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-009-0802-9

Keywords

Navigation