Skip to main content
Log in

σ-Hole and σ-lump interactions between gold clusters Aun (n = 2–8) and benzene

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

In this study, the non-covalent interactions between gold cluster and benzene have been evaluated at the PBE0-D3/def2-TZVP level of theory. Gold clusters Aun (n = 2–8) were used as σ-hole and σ-lump donors, and benzene was the corresponding electron-donating and -accepting molecule. The molecular electrostatic potential of Au clusters was analyzed, and the optimized structures and interaction energies of the Aun (n = 2–8) Bz complexes with σ-hole or σ-lump interaction were studied. Strong σ-hole and relative weak σ-lump interactions exist between Au cluster and benzene. With the help of atoms-in-molecules analysis and plotting of non-covalent interaction map, the interaction zones of the complexes were found out. The nature of these interactions was revealed through energy decomposition analysis by using the symmetry-adapted perturbation theory. σ-Hole interactions are dominated by electrostatic interaction, while σ-lump interactions are mainly driven by dispersion. This study can enrich the knowledge of interaction between Au cluster and π-systems and design of new materials based on coinage metal of σ-hole and σ-lump interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Confirmed.

References

  1. Luna AL, Novoseltceva E, Louarn E (2016). Appl Catal B 191:18–28

    Article  CAS  Google Scholar 

  2. Wang QL, Fang R, He LL (2016). J Alloys Compd 684:379–388

    Article  CAS  Google Scholar 

  3. Olmos CM, Chinchilla LE, Rodrigues EG (2016). Appl Catal B 197:222–235

    Article  CAS  Google Scholar 

  4. Yuan J, Chen Y, Li H, Lu J, Zhao H, Liu M, Nechitaylo GS, Glushchenko NN (2018). Sci Rep 8:3228

    Article  PubMed  PubMed Central  Google Scholar 

  5. Haruta M, Kobayashi T, Sano H, Yamada N (1987). Chem Lett 2:405–408

    Article  Google Scholar 

  6. Stratakis M, Garcia H (2012). Chem Rev 112:4469–4506

    Article  CAS  PubMed  Google Scholar 

  7. Cao S, Tao FF, Tang Y, Li Y, Yu J (2016). Chem Soc Rev 45:4747–4765

    Article  CAS  PubMed  Google Scholar 

  8. Di Pietro P, Strano G, Zuccarello L, Satriano C (2016). Curr Top Med Chem 16:3069–3102

    Article  PubMed  Google Scholar 

  9. Zhou N, López-Puente V, Wang Q, Polavarapu L, PastorizaSantos I, Xu QH (2015). RSC Adv 5:29076–29097

    Article  CAS  Google Scholar 

  10. He L, Wang LC, Hao H, Ni J, Cao Y, He HY, Fan KN (2009). Angew Chem Int Ed 48:9538–9541

    Article  CAS  Google Scholar 

  11. Juarez R, Concepcion P, Corma A, Fornes V, Garcia H (2010). Angew Chem Int Ed 49:1286–1290

    Article  CAS  Google Scholar 

  12. Stenlid JH, Johansson AJ, Brinck T (2018). Phys Chem Chem Phys 20:2676–2692

    Article  Google Scholar 

  13. Stenlid JH, Brinck T (2017). J Am Chem Soc 139:11012–11015

    Article  CAS  PubMed  Google Scholar 

  14. Clark T, Hennemann M, Murray JS, Politzer P (2007). J Mol Model 13:291–296

    Article  CAS  PubMed  Google Scholar 

  15. Murray JS, Lane P, Politzer P (2009). J Mol Model 15:723–729

    Article  CAS  PubMed  Google Scholar 

  16. Politzer P, Murray JS (2013). Chem Phys Chem 14:278–294

    Article  CAS  PubMed  Google Scholar 

  17. Politzer P, Murray JS, Clark T (2013). Phys Chem Chem Phys 15:11178–11189

    Article  CAS  PubMed  Google Scholar 

  18. Clark T, Murray JS, Politzer P (2018). Phys Chem Chem Phys 20:30076–30082

    Article  CAS  PubMed  Google Scholar 

  19. Murray JS, Shields ZP, Seybold PG, Politzer P (2015). J Comput Sci 10:209–216

    Article  Google Scholar 

  20. Frontera A, Bauzá A (2018). Chem Eur J 24:7228–7234

    Article  CAS  PubMed  Google Scholar 

  21. Piña M, Frontera A, Bauzá A (2020). J Phys Chem Lett 11:8259–8263

    Article  PubMed  Google Scholar 

  22. Ulloa CO, Ponce-Vargas M, Muñoz-Castro A (2018). J Phys Chem C 122:25110–25117

    Article  CAS  Google Scholar 

  23. Sánchez-Sanz G, Trujillo C, Alkorta I, Elguero J (2020). Chem Phys Chem 21:2557–2563

    Article  PubMed  Google Scholar 

  24. Wang R, Wang Z, Yu X, Li Q (2020). Chem Phys Chem 21:2426–2431

    Article  CAS  PubMed  Google Scholar 

  25. Cui J, Zhang X, Meng L, Li Q, Zeng Y (2019). Phys Chem Chem Phys 21:21152–21161

    Article  CAS  PubMed  Google Scholar 

  26. Sánchez-Sanz G, Trujillo C, Alkorta I, Elguero J (2019). Chem Phys Chem 20:1572–1580

    Article  PubMed  Google Scholar 

  27. Bauzá A, Frontera A (2018). Inorganics 6:64–74

    Article  Google Scholar 

  28. Prakash M, Chambaud G, Al-Mogren MM, Hochlaf M (2014). J Mol Model 20:2534–2547

    Article  PubMed  Google Scholar 

  29. Reina M, Martinez A (2018). Comput Theor Chem 1130:15–23

    Article  CAS  Google Scholar 

  30. Zierkiewicz W, Michalczyk M, Scheiner S (2018). Phys Chem Chem Phys 20:22498–22509

    Article  CAS  PubMed  Google Scholar 

  31. Zhao Y, Truhlar DG (2006). J Chem Phys 125:194101–194118

    Article  PubMed  Google Scholar 

  32. Quintal MM, Karton A, Iron MA, Boese AD, Martin JML (2006). J Phys Chem A 110:709–716

    Article  CAS  PubMed  Google Scholar 

  33. Lousada CM, Johansson AJ, Brinck T, Jonsson M (2013). Phys Chem Chem Phys 15:5539–5552

    Article  CAS  PubMed  Google Scholar 

  34. Grimme S, Antony J, Ehrlich S, Krieg H (2010). J Chem Phys 132:154104–154119

    Article  PubMed  Google Scholar 

  35. Boys SF, Bernardi F (1970). Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  36. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2013) Gaussian 09, revision D.01. Gaussian Inc., Wallingford

    Google Scholar 

  37. Lu T, Chen FW (2012). J Comput Chem 33:580–592

    Article  Google Scholar 

  38. Humphrey W, Dalke A, Schulten K (1996). J Mol Graph 14:33–38

    Article  CAS  PubMed  Google Scholar 

  39. Hohenstein EG, Sherrill CD (2012). WIREs Comput Mol Sci 2:304–326

    Article  CAS  Google Scholar 

  40. Parrish RM, Burns LA, Smith DGA, Simmonett AC, DePrince AE, Hohenstein EG, Bozkaya U, Sokolov AY, Di Remigio R, Richard RM, Gonthier JF, James AM, McAlexander HR, Kumar A, Saitow M, Wang X, Pritchard BP, Verma P, Schaefer HF, Patkowski K, King RA, Valeev EF, Evangelista FA, Turney JM, Crawford TD, Sherrill CD (2017). J Chem Theory Comput 13:3185–3197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Baek H, Moon J, Kim J (2017). J Phys Chem A 121:2410–2419

    Article  CAS  PubMed  Google Scholar 

  42. Gruene P, Butschke B, Lyon JT, Rayner DM, Fielicke A (2014). Z Phys Chem 228:337–350

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author is grateful for the help from High Performance Computing Center in Shandong University and to Prof. Feng in Shandong University for the reasonable advice.

Code availability

Confirmed.

Author information

Authors and Affiliations

Authors

Contributions

Qiang Zhao has done all of the works in the investigation, calculation, and writing—review and editing.

Corresponding author

Correspondence to Qiang Zhao.

Ethics declarations

Consent for publication

The participant consents to publication.

Consent to participate

The author consents to participation.

Ethics approval

Not applicable.

Conflict of interest

The author declares that that there is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Q. σ-Hole and σ-lump interactions between gold clusters Aun (n = 2–8) and benzene. J Mol Model 27, 132 (2021). https://doi.org/10.1007/s00894-021-04756-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-021-04756-7

Keywords

Navigation