Skip to main content
Log in

A systematic study of the surface structures and energetics of CH3NO2 surfaces by first-principles calculations

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Density functional theory (DFT) has been employed within the generalized gradient approximation and Perdew–Burke–Ernzerhof functional (GGA-PBE) to study the structural and electronic properties of nitromethane (NM) surface models. Different surfaces, including (100), (001), (101), (110), and (111), are considered in this work. The corresponding properties of bulk crystal for NM were also calculated to form a contrast to the slab models. Results with anisotropic characteristics of different surfaces have been observed in this study. There was an obviously great anisotropy in electronic parameters, especially the band gaps of different surfaces, indicating the anisotropic impact sensitivity along different directions of NM. The band gap value for (111) surface, 2.687 eV, was smaller than that of other surfaces, showing a higher impact sensitivity for NM. The estimated anisotropy has been revealed in surface energies for different surfaces.

The valence band minimum (VBM) and conduction band maximum (CBM) of the nitromethane (100), (001), (101), (110) and (111) surface models

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Trevino SF, Prince E, Hubbard CR (1980) Refinement of the structure of solid nitromethane. J Chem Phys 73:2996

    Article  CAS  Google Scholar 

  2. Xiao HM, Wang ZY, Yao JM (1985) Quantum chemical study on sensitivity and stability of aromatic nitro explosives. Acta Chim Sin 43:14–18

    CAS  Google Scholar 

  3. Fan JF, Xiao HM (1996) Theoretical study on pyrolysis and sensitivity of energetic compounds.(2) nitro derivatives of benzene. J Mol Struct (THEOCHEM) 365:225–229

    Article  CAS  Google Scholar 

  4. Zhang CY, Shu YJ, Huang YG, Zhao XD, Dong HS (2005) Investigation of correlation between impact sensitivities and nitro group charges in nitro compounds. J Phys Chem B 109:8978–8982

    Article  CAS  Google Scholar 

  5. Zhu WH, Xiao HM (2010) First-principles band gap criterion for impact sensitivity of energetic crystals: a review. Struct Chem 21:657–665

    Article  CAS  Google Scholar 

  6. Politzer P, Murray JS (2015) Some molecular/crystalline factors that affect the sensitivities of energetic materials: molecular surface electrostatic potentials, lattice free space and maximum heat of detonation per unit volume. J Mol Model 21:25–35

    Article  Google Scholar 

  7. Politzer P, Murray JS (2016) High performance, low sensitivity: conflicting or compatible? Propellants Explos Pyrotech. 41:414–425

    Article  CAS  Google Scholar 

  8. Pospíšil M, Vávra P, Concha MC (2011) Sensitivity and the available free space per molecule in the unit cell. J Mol Model 17:2569–2574

    Article  Google Scholar 

  9. Politzer P, Murray JS (2014) Impact sensitivity and crystal lattice compressibility/free space. J Mol Model 20:2223

    Article  Google Scholar 

  10. Murray JS, Lane P, Politzer P (1995) Relationships between impact sensitivities and molecular surface electrostatic potentials of nitroaromatic and nitroheterocyclic molecules. Mol Phys 85:1–8

    Article  CAS  Google Scholar 

  11. Peter JSMPL (1998) Effects of strongly electron-attracting components on molecular surface electrostatic potentials: application to predicting impact sensitivities of energetic molecules. Mol. Phys. 93:187–194

    Article  Google Scholar 

  12. Klapötke TM (2007) High energy density materials. Springer, Berlin, p 125

  13. Tian B, Xiong Y, Chen L (2018) Relationship between the crystal packing and impact sensitivity of energetic materials. CrystEngComm 20:837–848

    Article  CAS  Google Scholar 

  14. Zhang C, Wang X, Huang H (2008) π-Stacked interactions in explosive crystals: buffers against external mechanical stimuli. J Am Chem Soc 130:8359–8365

    Article  CAS  Google Scholar 

  15. Ma Y, Zhang A, Xue X (2014) Crystal packing of impact-sensitive high-energy explosives. Cryst Growth Des 14:6101–6114

    Article  CAS  Google Scholar 

  16. Stepanov V, Anglade V, Balas Hummers WA (2011) Production and sensitivity evaluation of nanocrystalline RDX-based explosive compositions. Propellants Explos Pyrotech 6:240–246

    Article  Google Scholar 

  17. Dick JJ (1984) Effect of crystal orientation on shock initiation sensitivity of pentaerythritol tetranitrate explosive. Appl Phys Lett 44:859–861

    Article  CAS  Google Scholar 

  18. Dick JJ, Hooks DE, Menikoff R, Martinez AR (2004) Elastic–plastic wave profiles in cyclotetramethylene tetranitramine crystals. J Appl Phys 96:374–379

    Article  CAS  Google Scholar 

  19. Dick JJ, Mulford RN, Spencer WJ, Pettit DR, Garcia E, Shaw DC (1991) Shock response of pentaerythritol tetranitrate single crystals. J Appl Phys 70:3572–3587

    Article  CAS  Google Scholar 

  20. An Q, Liu Y, Zybin SV, Kim H, Goddard III WA (2012) Anisotropic shock sensitivity of cyclotrimethylene trinitramine (RDX) from compress-and-shear reactive dynamics. J Phys Chem C 116:10198–10206

    Article  CAS  Google Scholar 

  21. Zybin SV, Goddard III WA, Xu P, van Duin ACT, Thompson AP (2010) Physical mechanism of anisotropic sensitivity in pentaerythritol tetranitrate from compressive-shear reaction dynamics simulations. Appl Phys Lett 96:081918

    Article  Google Scholar 

  22. Zhou TT, Zybin SV, Liu Y, Huang FL, Goddard III WA (2012) Anisotropic shock sensitivity for β-octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazocine energetic material under compressive-shear loading from ReaxFF-lg reactive dynamics simulations. J Appl Phys 111:124904

    Article  Google Scholar 

  23. Zhou TT, Lou JF, Song HJ, Huang FL (2015) Anisotropic shock sensitivity in a single crystal δ-cyclotetramethylene tetranitramine: a reactive molecular dynamics study. Phys Chem Chem Phys 17:7924–7935

    Article  CAS  Google Scholar 

  24. Ge NN, Wei YK, Song ZF, Chen XR, Ji GF, Zhao F, Wei DQ (2014) Anisotropic responses and initial decomposition of condensed-phase β-HMX under shock loadings via molecular dynamics simulations in conjunction with multiscale shock technique. J Phys Chem B 118:8691–8699

    Article  CAS  Google Scholar 

  25. Conroy MW, Oleynik II, Zybin SV, White CT (2008) First-principles anisotropic constitutive relationships in β-cyclotetramethylene tetranitramine (β-HMX). J Appl Phys 104:053506

    Article  Google Scholar 

  26. Conroy M, Oleynik II, Zybin SV, White CT (2007) Anisotropic constitutive relationships in energetic materials: PETN and HMX. AIP Conf Proc 955:361

    CAS  Google Scholar 

  27. Oleynik II, Conroy M, White CT (2007) Anisotropic constitutive relationships in energetic materials: nitromethane and RDX. AIP Conf Proc. 955:401

    CAS  Google Scholar 

  28. Zhong M, Qin H, Liu QJ, Jiao Z, Zhao F, Shang HL, Liu FS, Liu ZT (2017) Influences of different surfaces on anisotropic impact sensitivity of hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine. Vacuum 139:117–121

    Article  CAS  Google Scholar 

  29. Bellitto VJ, Melnik MI (2010) Surface defects and their role in the shock sensitivity of cyclotrimethylene-trinitramine. Appl Surf Sci 256:3478–3481

    Article  CAS  Google Scholar 

  30. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:B864

    Article  Google Scholar 

  31. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133

    Article  Google Scholar 

  32. Clark SJ, Segall MD, Pickard CJ, Hasnip PJ, Probert MIJ, Refson K, Payne MC (2005) First principles methods using CASTEP. Z Kristallogr 220:567–570

    CAS  Google Scholar 

  33. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  34. Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787

    Article  CAS  Google Scholar 

  35. Fischer TH, Almlöf J (1992) General methods for geometry and wave function optimization. J Phys Chem 96:9768–9774

    Article  CAS  Google Scholar 

  36. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188

    Article  Google Scholar 

  37. Yarger FL, Olinger B (1986) Compression of solid nitromethane to 15 GPa at 298 K. J Chem Phys 85:1534–1538

    Article  CAS  Google Scholar 

  38. Zhong M, Liu QJ, Qin H, Jiao Z, Zhao F, Shang HL, Liu FS, Liu ZT (2017) Influences of pressure on methyl group, elasticity, sound velocity and sensitivity of solid nitromethane. Eur Phys J B 90:115

    Article  Google Scholar 

  39. Guo F, Cheng XL, Zhang H (2012) Reactive molecular dynamics simulation of solid nitromethane impact on (010) surfaces induced and nonimpact thermal decomposition. J Phys Chem A 116:3514–3520

    Article  CAS  Google Scholar 

  40. Liu H, Zhao JJ, Wei DQ, Gong ZZ (2006) Structural and vibrational properties of solid nitromethane under high pressure by density functional theory. J Chem Phys 124:124501

    Article  Google Scholar 

  41. Sorescu DC, Rice BM, Thompson DL (2000) Theoretical studies of solid nitromethane. J Phys Chem B 104:8406–8419

    Article  CAS  Google Scholar 

  42. Xiao HM, Li YF (1995) Sci Chin B 25:23–28

    Google Scholar 

  43. Chen ZX, Xiao HM (2014) Propellants Explos Pyrotech 39:487–495

    Article  CAS  Google Scholar 

  44. Sharia O, Kuklja MM (2012) Surface-enhanced decomposition kinetics of molecular materials illustrated with cyclotetramethylene-tetranitramine. J Phys Chem C 116:11077–11081

    Article  CAS  Google Scholar 

  45. Avouris P, Ozso F, Hamers RJ (1987) The reaction of Si (100) 2× 1 with NO and NH3: the role of surface dangling bonds. J Vac Sci Technol B Microelectron Process Phenom 5:1387–1392

    Article  CAS  Google Scholar 

  46. Yates Jr JT (1991) Surface chemistry of silicon-the behaviour of dangling bonds. J Phys Condens Matter 31:S143

    Article  Google Scholar 

  47. Zhu WH, Zhang X, Wei T, Xiao H (2009) First-principles study of crystalline mono-amino-2, 4, 6-trinitrobenzene, 1, 3-diamino-2, 4, 6-trinitrobenzene, and 1, 3, 5-triamino-2, 4, 6-trinitrobenzene. J Mol Struct THEOCHEM 900(1–3):84–89

    Article  CAS  Google Scholar 

  48. Kamlet MJ, Adolph HG (1979) The relationship of impact sensitivity with structure of organic high explosives. II. Polynitroaromatic explosives. Propellants Explos Pyrotech 4(2):30–34

    Article  CAS  Google Scholar 

  49. Zhu WH, Xiao JJ, Ji GF, Zhao F, Xiao HM (2007) First-principles study of the four polymorphs of crystalline octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazocine. J Phys Chem B 111:12715–12722

    Article  CAS  Google Scholar 

  50. Xu XJ, Zhu WH, Xiao HM (2007) DFT studies on the four polymorphs of crystalline CL-20 and the influences of hydrostatic pressure on ε-CL-20 crystal. J Phys Chem B 111:2090–2097

    Article  CAS  Google Scholar 

  51. McCrone WC (1965) In: Fox D, Labes MM, Wessberger A (eds) Physics and chemistry of the organic solid state, vol II. Wiley, New York, p 726

    Google Scholar 

  52. Ou YX, Wang C, Pan ZL, Chen BR (1999) Sensitivity of hexanitrohexaazaisowurtzitane. Chin J Energ Mater 7:100–102

    CAS  Google Scholar 

  53. Sharia O, Kuklja MM (2012) Rapid materials degradation induced by surfaces and voids: ab initio modeling of β-octatetramethylene tetranitramine. J Am Chem Soc 134:11815–11820

    Article  CAS  Google Scholar 

  54. Sharia O, Tsyshevsky R, Kuklja MM (2013) Surface-accelerated decomposition of δ-HMX. J Phys Chem lett 4:730–734

    Article  CAS  Google Scholar 

  55. Tian XX, Wang T, Fan LF, Wang YK, Lu HG, Mu YW (2018) A DFT based method for calculating the surface energies of asymmetric MoP facets. Appl Surf Sci 427:357–362

    Article  CAS  Google Scholar 

  56. Liu P, Han XL, Sun DL, Wang Q (2018) First-principles investigation on the structures, energies, electronic and defective properties of Ti2AlN surfaces. Appl Surf Sci 433:1056–1066

    Article  CAS  Google Scholar 

  57. Zhang MH, Wang WY, Chen YF (2018) Insight of DFT and ab initio atomistic thermodynamics on the surface stability and morphology of In2O3. Appl Surf Sci 434:1344–1352

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11574254 and 11272296), the Fundamental Research Funds for the Central Universities (Grant Nos. 2018GF08 and 2682019LK07), the fund of the State Key Laboratory of Solidification Processing in NWPU (Grant No. SKLSP201843), the Doctoral Innovation Fund Program of Southwest Jiaotong University (Grant No. D-CX201735), and the Doctoral Students Top-notch Innovative Talent Cultivation of Southwest Jiaotong University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mi Zhong or Qi-Jun Liu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, M., Qin, H., Liu, QJ. et al. A systematic study of the surface structures and energetics of CH3NO2 surfaces by first-principles calculations. J Mol Model 25, 164 (2019). https://doi.org/10.1007/s00894-019-4061-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-019-4061-0

Keywords

Navigation